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Abstract—Selfish behaviors of users can increase av-
erage data transmission latency in computer networks. A
selfish routing game is a simple model of the selfish be-
haviors and its replicator dynamics has been proposed. To
reduce the inefficiencies due to the selfish behaviors, a con-
trol method to impose latency on each transmission path as
a state-dependent tax has been proposed. Several proper-
ties of the control method have been discussed using the
model based on the replicator dynamics. In this paper, we
propose a routing algorithm based on replicator dynamics
modeling an effect of the state-dependent tax. Moreover,
we show the effectiveness of the proposed algorithm using
a network simulator.

1. Introduction

In large computer networks, there exist several inef-
ficiencies caused by selfish behaviors [1], [3]. To re-
solve such inefficiencies, a mechanism for packet control is
needed. Recently, several game theoretical methodologies
have been paid much attention to model and resolve such a
problem [1]. A selfish routing game is a simple model of
selfish behaviors in networks [5]. Its replicator dynamics
has also been proposed [4], [6].

We consider a single-commodity network with a source
and a sink. We suppose that there is a fixed flow demand
from the source to the sink, and users select paths so as
to minimize their own latencies. Such selfish behaviors
cause several inefficiencies [1]. Braess’s paradox is widely
known as an example of such inefficiencies [2]. In Braess’s
paradox, an equilibrium flow achieved by selfish behaviors
differs from the minimum latency flow.

On the other hand, inefficiencies due to players’ self-
ish behaviors in social systems have also been studied. To
model and resolve conflicts between a payoff of each player
and the total payoff of players, replicator dynamics with a
subsidy and a capitation tax has been introduced [8]. Its
application to the selfish routing game has also been stud-
ied [9]. In this model, an additional latency is imposed on
each transmission path as a state-dependent tax to control
the selfish routing. Several properties of the model have
been shown.

In this paper, we consider a stabilization problem of the
target state. We propose a routing algorithm based on repli-

cator dynamics modeling an effect of the state-dependent
tax. The latency of the target state is unaffected by the
state-dependent tax in the proposed algorithm. Using a
graph, we show that the target state can be stabilized by
the proposed state-dependent tax.

2. Preliminaries

2.1. Selfish Routing

We consider a single-commodity network G = (V,E)
with a source vertex s and a sink vertex t, where V and
E are sets of vertices and edges, respectively. Suppose
that there is a fixed flow demand and it is routed from the
source s to the sink t. Let P be the set of paths s-t. A
flow x = (xp1 , . . . , xpn)T is a nonnegative vector, where
xpi is the amount of flow routed over the path pi ∈ P and
n is the number of elements in P . For a flow vector x, we
define the flow on an edge e ∈ E by xe =

∑
pi∋e xpi .

Let le(xe) be the latency on the edge e ∈ E and we as-
sume that it is a nonnegative, continuous, and nondecreas-
ing function. The latency lpi(x) of pi ∈ P is given by
lpi(x) =

∑
e∈pi

le(xe), and the average latency l̄(x) of a
flow vector x is given by l̄(x) =

∑
pi∈P xpi lpi(x). For

simplicity, we assume the total amount of the fixed flow
demand is equal to 1, that is,

∑
pi∈P xpi = 1.

Suppose that users select paths in P in order to mini-
mize the latency. A selfish routing game is a simple model
of such a selfish behavior in networks [1]. Its replicator
dynamics has been proposed as follows [4], [6]: for all
pi ∈ P ,

ẋpi = xpi(l̄(x)− lpi(x)). (1)

In the selfish routing game, a flow vector x is said to be a
Nash flow if lpi(x) ≤ lpj (x) holds for every pair of paths
pi and pj with xpi > 0 [3].

In the above definition of the selfish routing game, a
packet routing mechanism is not given explicitly. So, we
propose Algorithm 1 as a selfish routing algorithm based on
replicator dynamics. In this algorithm, we assume that the
end-to-end latency of each path is observed by the sink and
the source receives it as a message. Based on the received
message, the source increases flows routed over paths with
lower latency than the average and decreases flows routed
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over paths with higher latency than the average within min
and max.

Algorithm 1 Selfish Routing Algorithm
◃ n is the number of paths from s to t.
◃ ϵ is the change ratio of flow.
◃ s is the packet size.
◃ d is the flow demand.
◃ xpi is a current weight of path i.
◃ lpi(x) is a end-to-end latency of path i.

max← d+(1−n)s
d

min← s
d

l̄(x)←
∑n

i=1 xpi lpi(x)
for i = 1 to n− 1 do

xpi ← xpi + ϵxpi(l̄(x)− lpi(x))
if xpi > max then

xpi ←max
end if
if xpi < min then

xpi ←min
end if

end for
xpn ← 1−

∑n−1
i=1 xpi

2.2. Braess’s Paradox

In the selfish routing game, there exist several inefficien-
cies due to selfish route selections of users. Braess’s para-
dox is one of the well-known examples in such inefficien-
cies [7]. Intuition may suggest that an additional edge with
zero or sufficiently low latency reduces the average latency
of the flow in the network, but it is incorrect in some cases
and the average latency may increase due to players’ self-
ishness. That is called Braess’s paradox.

3. Control of Selfish Routing

3.1. Replicator Dynamics with A Subsidy and A Capi-
tation Tax

To reduce inefficiencies in social systems, Kanazawa et
al. have proposed replicator dynamics with a subsidy and a
capitation tax [8]. Its application to the selfish routing game
has also been studied [9]. Let x∗ be the target state. In
this model, we stabilize the target state imposing additional
delay c(x) on each path as the capitation tax and removing
delay βx∗

pi
/xpi from path pi as the subsidy where β is the

total amount of subsidies. Since c(x) − βx∗
pi

/xpi should
be nonnegative and as small as possible, we set c(x) =
maxpi∈P {βx∗

pi
/xpi}. Thus, the latency of each path pi ∈

P with the subsidy and the capitation tax is given by

lpi(x) + max
pi∈P

{
β

x∗
pi

xpi

}
− β

x∗
pi

xpi

. (2)

Suppose that every path is used for the packet transmission
at least in the initial state, that is, xpi(0) > 0 is assumed
for any path pi ∈ P . By this assumption, within any finite-
time interval, xpi > 0 holds for all pi ∈ P . Since Eq.
(2) is always greater than or equal to lpi(x) for all pi ∈
P with equality if and only if x = x∗, it is well-defined
as a latency function in the selfish routing game and the
latency of the target state is unaffected by the additional
latency. Thus, replicator dynamics of the selfish routing
with a state-dependent tax is given by

ẋpi = xpi(l̄(x)− lpi(x)) + β(x∗
pi
− xpi). (3)

Let the linearization system of Eq. (1) at x = x∗ be ẋp =
J0x, and be λ0i, i = 1, ..., n as eigenvalues of J0, where
n is the total number of paths. It has been proved that an
equilibrium point of Eq. (1) is also an equilibrium point of
Eq. (3), and the target state x = x∗ of Eq. (3) is locally
asymptotically stable if β > maxi{ℜ(λ0i)}, where ℜ(λ0i)
is the real part of λ0i [8].

3.2. Control Algorithm

In this paper, we assume that the source selects paths
based on the received latency from the sink. The sink ob-
serves the latency of each path and sends it as a message pe-
riodically with a specified period. Therefore, the sink can
control the source routing by sending fake messages which
informs a latency differs from the observed one. To stabi-
lize the target flow, we consider that the sink informs the
latency added the state-dependent tax defined by Eq. (2) to
the source as an observed latency. We propose Algorithm
2 as an implementation of the state-dependent taxation. It
calculates the latency which is imposed the state-dependent
tax on and the sink informs it to the source.

Algorithm 2 SDT (State-Dependent Taxation)
◃ n is the number of paths from s to t.
◃ β is the total subsidy.
◃ xpi is a current weight of path i.
◃ x∗

pi
is a desirable weight of path i.

◃ lpi(x) is a end-to-end latency of path i.

maxsub← 0
for i = 1 to n do

if
βx∗

pi

xpi
> maxsub then

maxsub← βx∗
pi

xpi

end if
end for
for i = 1 to n do

lpi(x)← lpi(x) + maxsub− βx∗
pi

xpi

end for
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Figure 1: A simple example of networks.
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Figure 2: Latencies of s-v and w-t.

4. Simulation

4.1. Network Topology

In this section, we consider a graph shown in Fig. 1
which exhibits a Braess’s paradox. Suppose that a user
sends UDP packets from s to t. The flow demand is 1Mb
and the packet size is 10 byte. The bandwidth of links s-v
and w-t is 1Mbps and that of s-w, v-w, and v-t is 64Mbps.
So, s-v and w-t may be bottleneck links. The propagation
delay of links s-v and w-t is 0.3 µs, that of s-w and v-t is
1.4 µs, and that of v-w is 0.25 µs. We set the queue size of
each edge to 100.

We identify link latency functions of the graph shown in
Fig. 1. We employ an M/M/1 model as the latency func-
tion. Figure 2 shows relationships between the flow and
the latency on edges s-v and w-t, and the indentification of
the latency function of them. As shown in Fig. 2, the la-
tency function of s-v and w-t is given by le(x) ≃ 0.3

1−x (µs),
that of v-w is le(x) ≃ 0.25(µs), and that of s-w and v-t is
le(x) ≃ 1.4(µs).

In this section, suppose that the sink observes the latency
of each path every 0.1 seconds. Using the average of the
observed latencies in 2.0 seconds, Algorithm 2 is executed,
the latency is informed to the source, and Algorithm 1 is ex-
ecuted every 2.0 seconds. Let paths 1, 2, and 3 correspond
to s-v-t, s-v-w-t, and s-w-t, respectively. In this case, we
have

ẋpi = xpi(l̄(x)−lpi(x))+β(x∗
pi
− xpi)(i = 1, 2), (4)

lp1(x) = 10−3

(
0.3

1− xp1 − xp2

+ 1.4
)

,
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Figure 3: Simulation result (β = 0).
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Figure 4: Simulation result (β = 0.56).

lp2(x) = 10−3

(
0.3

1− xp1 − xp2

+ 0.25 +
0.3
xp1

)
,

l̄(x) = xp1 lp1(x)+xp2 lp2(x)+(1− xp1)
(

0.3
xp1

+1.4
)

,

as replicator dynamics of the selfish routing in the graph
shown in Fig. 1.

4.2. Results and Discussions

We set the minimum latency flow (1/2, 0, 1/2)T to the
target state x∗. From Sect. 2.1, the target state of Eq. 4 is
stabilized with β > 0.55.

Figure 3 shows a simulation result without the tax (β =
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Figure 5: Simulation result (β = 1.0).
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Figure 6: Transient behavior of Eq. (4) for β = 0.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  500  1000  1500  2000  2500  3000  3500  4000

xp1

xp2

Figure 7: Transient behavior of Eq. (4) for β = 0.56.

0), where the horizontal axis is time, and the vertical axis
is the amount of flow routed over each path. As shown in
Fig. 3, the flow of path 2 increases and the flows of paths
1 and 3 decrease. Figure 4 shows a simulation result with
state-dependent tax (β = 0.56). The target state in Eq. 4
is stabilized for β = 0.56. As shown in Fig. 4, the flows
of paths 1 and 3 increases and the flow of paths 2 decrease.
However, the target state isn’t stabilized. Figure 5 shows
simulation result with state-dependent tax (β = 1.0), and
in this case, the target state is stabilized. From these simu-
lation results, we find that β may be larger than the theoret-
ical value to stabilize the target state. This may be due to
discretization of replicator dynamics, noises, and errors in
identifying latency functions. Figures 6 and 7 show tran-
sient behavior of Eq. (4) for β = 0 and β = 0.56. As
shown in these figures, the stable states of Figs. 3 and 5 are
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Figure 8: Transient behavior of the state-dependent tax
(β = 1.0).

almost same as those of Figs. 6 and 7. Figure 8 shows the
transient behavior of the state-dependent tax for β = 1.0,
where the horizontal axis is time, and the vertical axis is
the value of the state-dependent tax. As shown in Fig. 8,
the state-dependent tax converges near the origin. In the
steady state, the average latency for β = 0 is 2.6(µs) and
the average latency for β = 1.0 is 1.7(µs). Therefore, the
price of anarchy is 2.6

1.7 ≃ 1.53 and we can resolve the para-
dox.

5. Conclusions

In this paper, we proposed a routing algorithm based
on a selfish routing and we also proposed a flow control
algorithm based on a state-dependent tax. Moreover, we
showed the effectiveness of the proposed algorithm using a
network simulator.

Our future work is to clarify the reason why β must be
larger than the theoretical value to achieve the stabilization
and extend our work to multiple source-sink network.
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