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Abstract—The nonlinear transformation from time do-
main to complex network domain recently introduced for
pseudoperiodic time series has been shown to be a pow-
erful tool in characterizing the complex dynamics of time
series via the organization of the corresponding complex
networks. In this paper, we test an extensive range of net-
work topological statistics for time series from two archety-
pal systems and show that they are capable of providing
a comprehensive statistical characterization of the dynam-
ics from different aspects, and can be used to distinguish
different dynamical regimes. Application of such network
statistics to the human electrocardiograms reveals signifi-
cant difference between the healthy individual and arrhyth-
mia patients.

1. Introduction

The past few years have witnessed great advances in the
field of complex networks, which provides a new paradigm
and profound insights into many of complicated systems
in engineering, social and biological fields [1, 2, 3]. We
propose a network approach to pseudoperiodic time series
analysis recently as a kind of transformation from the time
domain to the complex network domain [4]. This method
exploits the periodicity contained in the time series [5] and
segments it into sequential cycles. By considering the in-
dividual cycles as the nodes and associating the network
connectivity with the correlation among cycles, the time
domain dynamics are naturally encoded into the network
configuration.

Representing the time series through the corresponding
complex network, the dynamics of the time series can then
be explored from the network organization, which is quan-
tified via a number of topological statistics. Such statis-
tics can provide new information about the phase space ge-
ometry of the cycles within pseudoperiodic time series. In
this paper, we quantitatively analyze different networks ex-
tracted from two typical pseudoperiodic time series with
distinct dynamics in terms of the various network metrics.
Our goal is to provide a comprehensive statistical charac-
terization of the dynamics of the time series via an exten-
sive set of network statistics. Specifically, we want to as-
sociate different aspects of the dynamics of the time series
with the topological indices of the network, and demon-
strate how such statistics can be used to quantify and dis-
tinguish different dynamical regimes.

2. Chaotic vs. stochastic time series

We use the chaotic time series from the x component of
the well know Rössler system given by:



















x′ = −(y + z)
y′ = x + 0.398y
z′ = 2 + z(x − 4)

(1)

and the noisy periodic signal yn = sin(2πωn) + bηn (b =
0.2836), where η is I.I.D noise following η ∼ N(0, σ2),
which are the same time series as were used in [4]. These
two time series contain an obvious periodic component,
and can be easily segmented into consecutive cycles.

We first segment the pseudoperiodic time series into m
consecutive cycles according to the local minimum (or
maximum), denoted as {C1,C2, ...,Cm}. For each pair of
cycles Ci and C j (i, j = 1, 2, ...,m, i , j) with length li
and l j, respectively, Both correlation coefficient and phase
space distance can be used in comparing two cycles, and we
have shown that these two measures are essentially equiv-
alent [4]. In this paper we choose to use the phase space
distance, since it is physically meaningful.

We begin with a graphical representation of the binary
network using the KK algorithm [6] (the choosing of the
threshold is discussed in detail later in this section). This
algorithm performs graph layout (in a two-dimensional
plane) for undirected graphs. Essentially, vertices that
are closer in the graph-theoretic sense (i.e., by following
edges) will have stronger springs and will therefore be
placed closer together. As can be clearly observed in Fig.1,
the networks from the two time series demonstrate funda-
mentally different structures. In the network from chaotic
data, the nodes lie on an elongated manifold, exhibiting a
heterogeneous distribution. That is, the manifold has nodes
congregating at different locations, so that some regions are
highly clustered with nodes and others are rather sparse. In
comparison, the network from the noisy periodic time se-
ries looks like a random network, with the nodes entangled
with each other and their edges intersecting. A chaotic at-
tractor contains infinitely many UPOs, each cycle that be-
longs to a certain UPO-n has many other cycles in its vicin-
ity due to the attraction of the stable manifold associated
with the UPO-n. It then becomes a center of a cluster and
the number (or density) of the neighbors is related to its
stability decided by the vector field along its trajectory.
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Figure 1: Complex network from (a) x component of
Rössler system (upper panel) (b) noisy sine signal (lower
panel).

Degree distribution is a basic statistic of the network. We
consider the joint degree distribution P(k1, k2), which is a
natural extension of the 1-D degree distribution. It gives
the probability that a randomly selected edge has degrees of
adjacent nodes equal to k1 and k2. P(k1, k2) contains more
information about the connectivity between nodes and is
expected to capture the degree correlation, or alternatively,
assortativity, among the nodes.

Many networks show assortative mixing on their de-
grees, i.e., a preference for high degree vertices to attach
to other high-degree vertices [7]. Interestingly, we find that
the network from the Rössler system also demonstrates as-
sortativity. Note that the clusters in Fig. 1 are on a low
dimensional manifold and are not overlapping, and most
nodes connected to each other within the same cluster have
a roughly similar number of connected neighbors or de-
grees. The common degree shared by the nodes from one
cluster may differ from that of another because of the dif-
ferent stability of the center node. This has led to the fact
that nodes with similar degrees are interconnected to each
other, i.e., assortativity property.

One way of capturing the degree correlation is to exam-
ine the average degree of neighbors of a node with degree
k, which is defined as: knn =

∑

k′ k′P(k′|k) , where P(k′|k)
denotes the conditional probability that an edge of degree
k connects a node with degree k′. If this function is in-
creasing, then the network is assortative. From Fig. 2, we
can see that the network from chaotic time series shows a
high degree of assortativity in sharp contrast to that from
the noisy sine signal, which has no assortativity or dis-
assortativity property.

Now we check the betweenness centrality, which was
first proposed in social network studies [8]. Take the ac-
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Figure 2: Assortativity property for networks from (a) x
component of Rössler system (b) noisy sine signal.

tor network for example, the betweenness of an actor is
an indicator of who are the most influential people in the
network, the ones who control the flow of information be-
tween most others. We find that the overall betweenness
from the chaotic Rössler data follows a power law distri-
bution, in contrast to the exponential distribution for the
noisy periodic data, see Fig. 3. The distinct distributions
show that the cycles are structured with different mecha-
nisms in phase space. The PDF of a power law type usu-
ally decreases much more slowly than an exponential one,
which indicates that for the chaotic time series, the number
of nodes with high betweenness much exceeds that from
the periodic signal. This is essentially a reflection of the
clustering property associated with the UPOs embedded in
the chaotic attractor. The high betweenness nodes, as have
been pointed out, correspond to cycles in between adjacent
clusters that act as bridges. Since a chaotic attractor con-
tains infinitely many UPOs, there will be numerous clusters
in the corresponding network, such intermediate cycles will
also be large in number.

The clustering property can also be quantified in terms of
the number of motifs of different order. A motif [9] M is a
pattern of interconnections occurring either in a undirected
or in a directed graph G at a number that is significantly
higher than in the randomized counterparts of the graph.
For example, triangles are among the simplest nontrivial
motifs. For the network from chaotic time series which dis-
plays many clusters, the motifs (e.g, fully connected sub-
graphs of order n) will appear more frequently than in the
random graph from the noisy periodic signal, where there
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Figure 3: Between centrality for complex networks from
(a) x component of Rössler system (b) noisy sine signal.

are no obvious patterns. As is shown in Fig. 4, the num-
ber of fully connected subgraph-4s in the network from the
chaotic system significantly exceeds that from the noisy pe-
riodic data, especially at low network density, where the
former is almost four to six times larger than the latter.

3. Application to human electrocardiograms

In this section, we calculate the network statistics for
time series from various ECGs. Figure 5 gives the net-
work representation for the two ECGs. As can be seen,
the two networks take on significantly different structures.
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Figure 4: Motif numbers for complex networks from x
component of Rössler system and noisy sine signal.
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Figure 5: Complex networks from a healthy subject (upper
panel) and an arrythmia patient (lower panel).

The network from the healthy subject assumes a elongated
shape. In comparison, the network from the patient seems
to be a random network. Though the distribution of the
betweenness are similar (both power-law distribution, the
network betweenness centrality does show some difference
(0.124 for the healthy and 0.049 for the patient). More-
over, the two networks also display different extent of as-
sortativity. This is clearly illustrated in Fig. 6, where the
network from the healthy subject demonstrates obvious as-
sortativity, with the corresponding assortativity coefficient
being 0.674, much larger than that of the arrythmia patient
(0.208).

4. Conclusion

We have tested an extensive range of statistics of the net-
works constructed from archetypal and real-world time se-
ries. We finds that these statistics can provide useful char-
acterization of the dynamics of the data from different per-
spectives. Application to human ECG data shows that the
method can effectively distinguish healthy and arrythmia
patients.
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Figure 6: assortativity for complex networks from a healthy
subject and an arrythmia patient.
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