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Abstract—A single-celled amoeboid organism, the true
slime mold Physarum polycephalum, exhibits rich spa-
tiotemporal oscillatory dynamics and sophisticated parallel
problem solving capabilities. To investigate impacts on the
accuracy and speed of the parallel problem solving as a re-
sult of the increase of the number of processing units, we
use our previously demonstrated experimental system that
leads the organism to search for a solution to the Travel-
ing Salesman Problem (TSP). In this study, increasing the
problem size N of TSP from 4 to 8, we show the follow-
ing results; 1) the accuracy to reach a good solution was
robustly maintained independently of N; and 2) the time
required to reach a solution and the amount of information
that the organism acquired from the optical feedback did
not grow drastically. These results hint that the search abil-
ity of our system is enhanced by “economical” dynamics
of the organism to find a high quality solution at lower ex-
ploration cost.

1. Introduction

In the amoeba-based computer [1, 2, 3], with the assis-
tance of optical feedback to implement a recurrent neural
network model, the amoeboid organism changes its shape
by expanding and shrinking its photosensitive branches so
that its body area can be maximized and the risk of being
illuminated can be minimized. Our system finds a good
solution of the 8-city TSP with a high probability.

Our latest results suggested that the organism might
have performed “economical” search, i.e., quickly gather-
ing useful information from the illuminations to reach a
good solution without wasting exploration cost [4]. When
the extent of search space diverges, can the system save
the exploration resources, particularly the time required to
reach a good solution? For the N-city TSP, our system uses
N2 branches of the organism, and the number of all solu-
tions grows rapidly as a factorial function (N—1)!/2. In this
study, increasing N from 4 to 8, we try to draw the growth
curve of the exploration time as a function of N. As shown
in Fig. 1, we fix the physical space size of the experimental
condition for all N, so that we can compare the exploration
time under the condition that information propagation ve-
locities among the branches of the organism are equalized

Figure 1: Topological maps (left), initial configurations
(center), and valid solutions reached (right), where black
and gray pixels represents that the thickness of the cor-
responding region of the organism was increased and de-
creased, respectively. Red pixels show the border be-
tween the body of the organism and unoccupied agar re-
gion (white pixels). White trapezoids indicate the illumi-
nated regions. A, B, C, D, and E are examples of 4-, 5-, 6-,
7-, and 8-city TSP, respectively. N? branches are needed
for solving N-city TSP. Thus, 64 — N? lanes were disabled
with constant illuminations for the cases where N < 8.
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. ~ [4[s [e[7 [8 ) [ N [ 4[5 [6 ] 7 [8 ]
#(Solutions) | 3 | 12 | 60 | 360 | 2520 Amocba Vol | 12.02 | 11.67 | 12.15 | 11.01 | 14.15
Shortest | 100 | 100 | 100 | 100 | 100 y 00495 | 0058 | .0067 | .0076 | .0081

Longest 200 | 200 | 200 | 200 | 200
Av. Dist. | 153.3 | 150.0 | 145.2 | 146.0 | 149.1
Std. Deyv. 50.3 | 30.0 | 22.6 | 185 | 16.9

Table 1: Statics of TSP maps used in the experiments. The
number of all valid solutions, shortest and longest route dis-
tances, and averages and standard deviations of route dis-
tances of all solutions are shown.

independently of N.

This study is an extension of our research of which we
presented the latest results in our paper [4] that appears
prior to this article. Therefore, to avoid overlapping of the
detailed explanations of common experimental setups, we
majorly describe only the new contents of this study.

2. Methods

2.1. TSP Maps

Figure 1 shows the maps used in the experiments. We
designed these maps so that they give unimodal-like dis-
tributions of route distances of valid solutions. As shown
in Table 1, for all maps, the shortest and longest routes
take distances 100 and 200, respectively. For each map,
the shortest and longest routes exist uniquely, and the av-
erage route distance of all solutions (i.e., the peak of the
unimodal distribution) is located at about 150.

2.2. Experimental Conditions

When the organism is placed in a multi-lane stellate chip
resting on an agar plate, the branches of the organism in-
herently grow to occupy the entire region of the lanes but
withdraw when illuminated by visible light. According to
the recurrent neural network model proposed by Hopfield
and Tank [5], the N-city TSP can be tackled using N? lanes.
In this study, for all N-city cases, we use 64-lane chip pre-
pared for solving the 8-city TSP. As shown in the center
column of Fig. 1, for the cases where N < 8, 64 — N?
lanes are disabled by constant illuminations so that the or-
ganism can elongate up to N> branches in the enabled (not
disabled) lanes. Each enabled lane is labeled with Pn indi-
cating the city name P and its visiting order n. When the
organism sufficiently elongates its branch in lane Pn, we
consider that city P was visited nth.

To prepare for the initial condition for the computing, we
illuminate all the lanes and wait until the center disk of the
chip is fully covered with the body of the organism. Table
2 shows the averaged volumes of the organism used for the
experiments.

Table 2: Experimental Parameters. Average values of the
volume of the organism (mg) and values of parameter y
used in the experiments are shown.

After the computing starts, the organism changes its
shape in the enabled lanes by expanding or shrinking its
branches at each period (1 to 2 min) of autonomous os-
cillation. This spatiotemporal oscillatory movements are
exploited as search dynamics in our computing scheme.
Monitoring the changes in the shape of the organism at ev-
ery 6 sec, the optical feedback system automatically up-
dates the illumination pattern, which is a grayscale image'
projected using a PC projector. The optical feedback sys-
tem determines whether each lane is illuminated or not in
accordance with a modified Hopfield-Tank neural network
algorithm [2]. We set the values of a parameter y of the
algorithm as shown in Table 2, following the instruction
given in [3, 4].

The complex oscillatory dynamics of the organism pro-
duce fluctuated growth movements of the branches that
evoke a variety of illumination patterns. There are 2V * dif-
ferent illumination patterns that give the entire extent of
search space. Through trial-and-error process to explore
the search space, less frequently illuminated N branches
elongate exclusively, and the system finally reaches a valid
solution as shown in the right column in Fig. 1. The system
is judged as reaching the solution when the illumination
pattern was kept unchanged for more than 10 min.

3. Results

3.1. Accuracy

For each N, the number of experimental trials carried
out and performance evaluations in finding a solution are
shown in Table 3. Although the number of all valid solu-
tions grows rapidly, the averaged route distance of the so-
lutions reached remained relatively small and did not grow.
In the 8-city case, the system exhibited relatively the best
performance in finding a good solution. Indeed, the aver-
aged route distance was 133.0 which is evaluated as “top
18.7%),’ i.e., the number of solutions shorter than 133 is
470 and is smaller than 18.7% of the number of all 2520 so-
lutions. In Fig. 2B, we compared the original distribution
of valid solutions obtained from the given maps (listed in
Table 1) and the experimentally obtained distribution of so-
lutions found by the organism (listed in Table 3). It is clear
that the system found a good solution more accurately than

!Each image pattern determines illuminated and non-illuminated lanes
that are colored with white and black, respectively
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| N [ 4 [ s [ 6] 7 ]38 |
WTrals) | 7 | 6 | 7 | 9 | 16
Best | 100 | 100 | 100 | 128 | 117

Worst 200 174 174 151 165
Av. Dist. | 137.1 | 133.0 | 135.6 | 139.4 | 133.0
(Top %) | (33.3) | (33.3) | (40.0) | (39.7) | (18.7)

Table 3: Statics of Experimental Results. For each N, the
number of trials performed, best and worst solutions found,
and averaged route distance of the solutions reached to-
gether with its relative rank in percentage are shown.

random sampling from the original distribution, and the ac-
curacy was maintained robustly independent of N.

3.2. Speed

Fig. 2C shows how the averaged time required to reach
a valid solution grows as a function of N. The growth ap-
pears to be “linear” at least for these small Ns, although we
cannot assert it because the number of sample data for each
N is not sufficient.

3.3. Information Exploration

We counted the number of the patterns evoked in the
course of solution search, excluding overlapped occur-
rences of identical patterns. This counts represents the ex-
tent of search space explored by the system and can be in-
terpreted as the accumulated amount of information that the
organism obtained from the optical feedback system. Fig.
2D shows the growth function of the acquired information.
Our data suggested that the growth is “linear.”

4. Discussion and Conclusion

In this study, we investigated how the expansion of
search space increases the use of exploration resources,
such as time and information required for accurate solu-
tion search. The increase in the problem size N broad-
ens the search space “nonlinearly,” as the number of en-
abled lanes N? and number of all valid solutions (N — 1)!/2
grow rapidly. However, for a small problem size N rang-
ing from 4 to 8, our system needed only “linearly” grown
exploration resources to maintain the same quality of accu-
rate solution search. It would be hard to cover the non-
linearly widened search space by a succession of “ran-
dom” decision making using linearly grown exploration re-
sources [6, 7, 8]. Thus, we consider that the search ability
of our system was enhanced by some “economical” dynam-
ics to attain accurate solution search at lower exploration
cost.

This observation is consistent with what we reported
in our paper posted prior to this article [4]. Changing
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Figure 2: (A) Growth function (N — 1)!/2 of the number
of all valid solution. (B) Averaged route distances of given
valid solutions (magenta) and solution reached in the exper-
iments (blue). (C) Growth of the averaged time required to
reach a valid solution. (D) Growth of the averaged number
of illumination patterns explored. All error bars indicate
standard error (= standard deviation/ VH#(T rials).
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the experimental condition, our system became capable of
achieving the same quality of accurate solution search us-
ing shorter searching time and less information. In other
words, the organism could be tuned to select “economi-
cal” path in solution search requiring fewer exploration re-
sources, although we have not yet clarified why the organ-
ism could become “smarter.”

We consider the economical search process to be a se-
ries of correlated movements produced by the organism’s
intrinsic dynamics of which we can tune their parameters
somehow. Indeed, the authors have modeled the intrinsic
dynamics of the organism [9, 10]. When applied to solving
the “multi-armed bandit problem,” a problem of managing
the trade-off between the accuracy and speed of resource
allocation, the model works more economical than other
well-known algorithms.

The search dynamics of the amoeba-based computer are
understood as a hybrid of the Hopfield-Tank neural net-
work dynamics [5] of the optical feedback and complex
spatiotemporal oscillatory behavior [11, 12] of the intrinsic
dynamics of the organism . It is one of our future subject to
evaluate the net effect of the organism’s intrinsic dynam-
ics to enhance the system’s search ability by comparing
our system with a simulation model, which is a hybrid of
the Hopfield-Tank neural net and some random decision-
making unit. We believe that our studies on the econom-
ical search dynamics will contribute to understanding and
developing a wide variety of smart systems to achieve effi-
cient uses of resources in uncertain environments.
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