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Abstract—Power grids have risks that local accidents
or sudden fluctuations in the power flow can cause large-
scale blackouts due to a cascade of failures. For preventing
such phenomena which are socially and economically un-
desired, it is significant to mathematically understand how
power grids are tolerant to errors and attacks. Recently, the
dynamical robustness analysis has been developed to argue
robustness of networked systems by taking into considera-
tion both network structure and system dynamics. In this
study, we investigate the robustness of power grids in terms
of the dynamical robustness of complex networks.

1. Introduction

Reduction of CO2 emissions and depletion of fossil fules
are currently major issues to be handled in the world. To
deal with these issues, many countries are trying to ac-
celerate introduction of renewable energy sources (RES)
for efficient power generation. Power generation by RES,
such as wind turbines and photovoltaic (PV) units, is sig-
nificantly different from that by conventional power plant
in many aspects. In particular, the power generation by
such new generators are highly time-varying depending on
the climate. Also the conventional frequency regulation for
synchronous generators cannot be directly applied to these
induction generators. If the share of inverter-connected
generators increases, it becomes difficult to achieve sta-
ble power operation under the traditional system control.
Therefore, it is argued how to maintain frequency stability
against disturbance in the case of high share of inverter-
connected RES.

The conventional synchronous generators based on ro-
tating machinery have large inertias. The power system
dynamics in coupled synchronous generators is described
with a swing equation. When a disturbance occurs due to a
change in the generated power or consumed power, the fre-
quency deviates from the reference value. If the deviation
is within an acceptable range, then the system state recov-
ers the steady state and the frequency goes to the reference
value again. The inertia plays a role of time constant for the
swing equation. Therefore, the more the inertia is, the more
slowly the frequency recovers the reference value. The in-

ertia is the first process of frequency control, taking place
within several seconds after the disturbance. Since inverter-
based power generation is asynchronous, with small or no
inertia, the conventional frequency control is not valid in
principle. However, recently a concept to equip the oscilla-
tory dynamics with inverters is presented. In that case, the
inverter-connected power generators can also be treated as
synchronous generators with low inertia [1]. The impact of
low rotational inertia on power system stability and opera-
tion has been studied. The concept of virtual synchronous
machine and virtual inertia has been proposed for control-
ling the power system in the conventional way, i.e. through
self-organized synchronization property [2].

In this study, we consider the problem of low inertia
caused by large deployment of RES into the power sys-
tem from the standpoint of nonlinear dynamics and net-
work science. The tolerance of power grid against local
failure has been argued in various frameworks with com-
plex networks [3]. Also the concept of node-wise robust-
ness in power grids has been proposed [4]. Since power
system dynamics is involved with both network structure
and system dynamics, the framework of dynamical robust-
ness is suitable [5, 6]. We assume that the whole power grid
consists of many power systems interconnected each other
We denote the fraction of inverter-connected power gener-
ators with low inertia by p and investigate how frequency
stability is kept as p is increased in netwoks of swing equa-
tions. We further examine how to recover the

In Section 2, we introduce the model for inertial response
and describe the swing equation. In Section 3, we de-
scribe the model for multi-area power systems with hetero-
geneous inertia. In Section 4, simulation results are shown.
In Section 5, this work is summarized.

2. Model

2.1. Swing equation

Here we describe the modeling of inertial response [1].
After a frequency deviation occurs in a power system, ki-
netic energy stored in the rotating machinery is released.
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The kinetic energy is given by

Ekin =
1
2

Jω2
m, (1)

where ωm represents the angular velocity of the generator
machine (i.e. ωm = dθ/dt where φ denotes the phase of the
voltage) and J denotes the moment of inertia of the syn-
chronous machine.

The inertia constant H is defined by

H =
Ekin

S B
=

Jω2

2S B
, (2)

where S B is the rated power of the generator and H denotes
the time duration in which the rated power supply is possi-
ble due to the stored kinetic energy. Typically the values of
H are within the range of 2-10s.

The inertial response is represented as the variation in
rotational speed following a power imbalance.

˙Ekin = Jw2
mω̇m =

2HS B

ωm
ω̇m = Pm − Pe, (3)

where Pm is the mechanical power supplied by the genera-
tor, Pe is the electric power demand, and the last term repre-
sents the frequency-dependent load damping with damping
coefficient k.

Using an approximation ωm ≈ ω0 where ω0 is the refer-
ence angular velocity, the above equation can be rewritten
as follows:

ω̇m =
ω0

2HS B
(Pm − Pe). (4)

This equation implies that a larger value of inertia constant
H leads to slower frequency dynamics. In the power system
with a high share of inverter-connected generators without
inertia, the frequency stability relies on the inertia of the
remaining conventional synchronous machines.

2.2. Mutli-area power systems

We consider a local power grid, consisting of G genera-
tors and L loads, connected via M transmission lines. By
summing up Eq. (4) for all the nodes and defining the center
of inertia grid frequency ω, the so-called aggregated swing
equation model can be obtained as follows [1]:

ω̇ = − ω0

2HS B
(−kω + Pm − Pload − Ploss) (5)

where

ω =

∑G
i=1 HiS B,iωi∑G

i=1 HiS B,i

S B =

G∑
i=1

S B,i,H =
∑G

i=1 HiS B,i

S B

Pm =

G∑
i=1

Pm,i, Pload =

L∑
i=1

Pload,i, Ploss =

M∑
i=1

Ploss,l

The aggregated model is valid for highly meshed grid. For
simplicity, we assume Ploss = 0 hereafter.

Now, for an N-area power system, the frequency dynam-
ics of ith area (i = 1, . . . ,N) can be described as follows:

θ̇i = ωi, (6)

ω̇i =
1

Mi

∆Pi − kiωi −
∑

j

ViV jBi j sin(φi − φ j)

 , (7)

where the inertia constant is given by Mi ≡ 2HiS B,i/ω0,
the power imbalance term is given as ∆Pi ≡ Pm − Pload, Vi

represents the voltage level at node i, and Bi j denotes the
susceptance between node i and j. Here the voltage level is
assumed to be normalized at Vi = 1 for all i.

3. Results

3.1. Single area model

First, in order to understand the effect of inertia in the
power system, we observe frequency responses following
a disturbance in two-area system. Assuming that the 2nd
area corresponds to an infinite bus and set θ2 = 0 and ω2 =

0. The parameters are set at S B = 115[GW], H = 6[s],
ω0 = 2π f0 with f0 = 50[Hz] [Ulbig].

-0.2

-0.15

-0.1

-0.05

 0

 0.05

-10  0  10  20  30  40  50  60

F
re

q
u
e
n
c
y
 d

e
v
ia

ti
o
n

Time [s]

M=M0
M=0.5*M0
M=0.1*M0

M=0.01*M0

Figure 1: An example of the effect of inertia parameter on
the frequency response following a disturbance starting at
t = 0.

Figure 1 shows the frequency response of the 1st area
power system for different values of the inertia constant.
We assume a disturbance with ∆P = −0.8 starting at t = 0.
The frequency is given by ω1/2π. The frequency deviates
from the reference value due to the disturbance, but the ref-
erence value is recovered by the coupling with the infinite
bus within several tens of seconds. We can see that the
response time decreases as M1 is decreased. This is be-
cause M1 corresponds to the time constant of the frequency
dynamics. When the inertia decreases, the frequency re-
sponse tend to be steep and the frequency nadir becomes
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Figure 2: An example of the effect of inertia parameter on
the frequency response following a disturbance starting at
t = 0.

smaller. Since large fluctuation of the frequency can cause
a mechanical problem for generators, the fluctuation should
be kept in a very small range. Therefore, the low inertia
could lead to a serious problem about the frequency stabil-
ity.

The effect of inertia level on the range of frequency vari-
ation is shown in Figure 2. The maximum and minimum
frequency deviation is plotted against the different levels
(percentages) of the inertia M1. The results shows that the
frequency nadir monotonously decreases as the inertia level
decreases. The nonlinearity of the curve suggests that an
extremely low level of inertia is undesired for maintaining
frequency stability.

3.2. A multi-area model

Next, we study the nonlinear dynamics of a multi-area
power system model and how an introduction of low-inertia
systems influences the frequency response of the whole
power grid. Now we focus on a random grid topology as
illustrated in Fig. 3. This network consists of one hub node
which is only connected to the infinite bus and multiple
branch nodes. Some of the branch nodes are assumed to
have low inertia as indicated by gray color. Inspired by the
dynamical robustness analysis of complex networks [5, 6],
we denote the fraction of low-inertia nodes in the branch
nodes by p with 0 ≤ p ≤ 1.

Figure 4 shows the frequency response following a dis-
turbance to different node: (Case 1) the hub node with nor-
mal inertia; (Case 2) a branch node with normal inertia;
(Case 3) a branch node with low inertia.

In Case 1, the frequency in the hub node receiving per-
turbation is largely fluctuating. Although the other branch-
ing nodes are influenced by the perturbation to the hub
node, their fluctuation is not so large. The undesierd ef-
fect of low inertia is not observed in this case.

Infinite bus

Figure 3: A random grid topology with p = 0.4.
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Figure 4: Frequency response in the grid topology in Fig. 3
with p = 0.4. (Upper) Disturbance to the hub node with
normal inertia. (Middle) Disturbance to a branch node with
normal inertia. (Bottom) Disturbance to a branch node with
low inertia.
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In Case 2, the branch node with normal inertia experi-
ences the disturbance, but more fluctuation is observed for
the other two types of nodes. The low-inertia branch node
has the minimum frequency nadir. In this case, the self-
organized synchronization among the branching nodes is
effective.

In Case 3, since the branch node receiving the distur-
bance has low inertia, the deviation of the fluctuation is
much larger than the other cases. The result is similar to
that in the experiments of one-area model in Sec. 3.1. It
seems that the neighboring nodes are not able to mitigate
the rapid and dramatical decrease in the frequency.
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Figure 5: Frequency deviation in N = 50 random grid
where the level of inertial in each area is randomly deter-
mined.

Next, we examine the frequency response in N = 50
power grid where the inertia is heterogeneous. Namely,
the inertial level in each area is given randomly. The aver-
age degree is set at around 8%. In this case, the frequency
deviation seems to be small as shown in Fig. 5. Our cur-
rent issue is to explain in systematic numerical experiments
how frequency responses depend on the site in which a dis-
turbance occurs, the distribution of the local power system
with low inertia, and the grid topology. For this purpose,
we believe that the framework and the theory of dynamical
robustness is available.

4. Summary

We have studied a frequency response in power sys-
tem models described by swing equations. The aggregated
swing equation has been introduced to consider multi-area
power system. First, we have examined the effect of in-
ertia on the frequency response following a disturbance in
the single area power system model. Since the inertia cor-
responds to the time constant of the frequency dynamics,
a lower level of inertia causes a large deviation of the fre-
quency. This is undesired for maintaining frequency stabil-
ity. We have found that the fluctuation range nonlinearly

changes with the inertia level. Next, we have investigated
the multi-area power system model. The results have sug-
gested that the frequency response in each local area sys-
tem differs depending on the site having the disturbance,
the distribution of the low-inertia node, and the network
topology. Further investigation is required to argue how an
increasing share of inverter-connected generators with het-
erogeneous, low inertia influences the grid stability.
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