
An Improved Emulated Digital CNN Architecture for High Performance
FPGAs

László Füredi†, Zoltán Nagy‡, András Kiss† and Péter Szolgay† ‡

†Faculty of Information Technology, Péter Pázmány Catholic University
Práter street 50/a, Budapest, Hungary

‡Cellular Sensory and Wave Computing Laboratory Computer and Automation Institute,
Hungarian Academy of Sciences

Lágymányosi street 11, Budapest, Hungary
e-mail: furla@digitus.itk.ppke.hu, nagyz@sztaki.hu, kissa@digitus.itk.ppke.hu, szolgay@sztaki.hu

Abstract—Cellular Neural Network (CNN) is a
prototype Single Instruction Multiple Data (SIMD) like
architecture, where the basic operation of this architecture
is the weighted sum calculation. The emulated digital
CNN-UM architecture was implemented and tested on
different kind of array computers, eg. Cell Broadband
Engine (Cell BE), Field-Programmable Gate Arrays
(FPGAs), for utilizing the high performance of the digital
microprocessors. The arithmetic unit of the original Falcon
architecture was mainly optimized for the special features
of the Xilinx Virtex-II architecture. Implementing the
same architecture on the new Digital Signal Processor
(DSP) optimized FPGAs will be inefficient. In order to
achieve the highest possible performance the dedicated
elements of the new FPGAs should be fully utilized.
Therefore an improved arithmetic unit should be designed.
According to the requirements of the new arithmetic unit
the input data structure and the data-flow of the processor
should be redesigned. Additionally the interconnection of
the Falcon processing elements are optimized to utilize
the specialized interconnect resources on the FPGA.
Compared to the original Falcon processor with the
modified implementation on the new FPGA families
the clock frequency can be improved by 20 percent.
Additionally the area requirement of the arithmetic unit is
significantly reduced by utilizing the special features of the
DSP blocks.

1. Introduction

In high performance processors the operation delay and
the wiring delay is comparable. This effect is explicable
with the scaling down of the technology. The increase
of clock frequency the signal does not have enough time
to reach the destination in one cycle. The adjacent
computational elements can communicate faster because
in short range the wiring delay is not significant. The
effective architecture design’s prime aspect is the locality
precedence. This precedence is studied in an emulated
digital CNN-UM implementation. A multi-layer CNN
array can be used to solve the state equation of complex

dynamical systems [1][2]. The CASTLE and Falcon
emulated digital CNN chips were designed to reach this
goal [3][4], where the accuracy, template size, cell array
size and the number of layers can be configured. This
paper describes synthesis and implementation methods
used for the modified Falcon processor array on Virtex-5
and Virtex-6 FPGAs. The Falcon architecture is designed
to solve the full signal range model of the CNN cell [5][6].

ẋi, j(t) =

2·n∑
k=0

2·n∑
l=0

Ak,l · xi+k−n, j+l−n (t) +

+

2·n∑
k=0

2·n∑
l=0

Bk,l · ui+k−n, j+l−n (t) + Ii, j (1)

where x, u and z are the state, input and the bias values
of the CNN cell, n is the neighbourhood size, A is the
feedback, B is the feed forward template. The templates
are (2n+1)×(2n+1) sized matrices. The state equation of
the CNN array is solved on the Falcon architecture by
forward Euler discretization. The h time step value can
be inserted into the templates A and B, these modified
templates are denoted by Â and B̂ . Usually the input values
do not change for several time steps so the state equation
(1) can be partitioned into two parts, the feedback (2) and
the feedforward part (3).

xi, j(m + 1) =

2·n∑
k=0

2·n∑
l=0

Âk,l · xi+k−n, j+l−n(m) + gi, j (2)

gi, j =

2·n∑
k=0

2·n∑
l=0

B̂k,l · ui+k−n, j+l−n + h · Ii j (3)

The problem to be solved how to map the computational
problem defined in (2) and (3) on a virtual array to a given
physical FPGA where area/processor (logic slices, DSP
slices), on-chip memory (Block Random Access Memory
(BRAM)) and off-chip memory bandwidth are limited.
Depending on the complexity of the operator a small
amount of physical execution units can be implemented
n << N×M (in 2D case) or N×M×L (in 3D case).The
operator can be decomposed into small basic blocks which

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 103 -



use either the logic resources (such as adders) or the
dedicated resources (embedded multipliers) of the FPGA.
The result of this process is a Virtual Cellular Machine
optimized for the given application. The optimization can
be focused on area, accuracy, speed, dissipated power etc.
Main components are on-chip memory and the specialized
execution unit.

2. The resources on an FPGA

The main configurable elements of the new Xilinx
Virtex family is the Advanced Silicon Modular Block
(ASMBL)[7]. The architecture is column based where
each ASMBL column has specific capabilities, such as
logic, memory, Input/Output, DSP, hard IP and mixed
signal. By using different mix of the ASMBL columns
domain specific devices can be manufactured. In the new
architecture traditional 4-input Look-up Tables (LUTs)
are replaced by 6-input LUTs. Each configurable logic
block (CLB) is divided into two slices and every slice
contains 4 6-input LUTs, 4 registers, and carry logic.
In the new FPGAs the simple multipliers are replaced
by complex DSP blocks called XtremeDSP (DSP48E)
slices, it supports over 40 dynamically controlled operating
modes including: multiplier, multiplier-accumulator,
multiplier-adder/subtractor, three input adder, barrel
shifter, wide bus multiplexers, wide counters, and
comparators. The heart of the DSP48E is a 25bit by
18bit 2’s complements signed multiplier with full precision
43-bit result. It also contains a 48bit Arithmetic Logic Unit
(ALU) with optional registered accumulation feedback
and support for SIMD operations. Additionally, hard
wired 17 bit shift capability simplifies the construction of
large multipliers, while optional pipeline registers enable
even 550MHz operation. The number of DSP48Es is
1056 in a Virtex-5 SX240T and 2016 in a Virtex-6
SX475T FPGA. The other key configurable elements are
the interconnect wires. In the contribution we especially
focus on minimization of wire delays.

3. Architectural improvements

The new FPGA families have much more resources
than the Vitrex-II FPGA which was used for the first
implementation of the Falcon processor. For solving the
discretized version of the CNN state equation a large
number of multiplication is needed which can easily and
efficiently implemented by using the dedicated elemnts
(multipliers or DSPs) of the FPGAs. The aviable dedicated
resources of the differnt FPGAs can be seen on Figure 1.
Scaling up the original Falcon architecture on the new
FPGAs in terms of the multipliers shows that on new
FPGAs there are not enough configurable logic resources.
If 32 original Falcon processor cores are implemented on
the Virtex-II 3000 FPGA 94 percent of the configurable
logic blocks and all of the multipliers can be utilized.

XC2V3000
XC2V8000

XC5VSX50T
XC5VSX240T

XC6VSX475T

1

10

100

1000

10000

100000

1000000

96
168

288

1056
2016

96

168 264
1032 2128

28672
93184

32640

149760
297600

Multiplier Block RAM Logic

N
um

be
r 

of
 D

ed
ic

at
ed

 R
es

ou
rc

es

Figure 1: The Resorces of FPGAs

XC2V3000 XC2V8000 XC5VSX50T XC5VSX240T XC6VSX475T
0%

50%

100%

150%

200%

250%

Logic (3 multiplier) Logic (9 multiplier) Logic (DSP48E) Multiplier

Figure 2: The logic usage in Falcon

Examining the aviable resources on the Virtex-5 SX50T,
Virtex-5 SX240T and Virtex-6 SX475T devices 228,
182 and 140 percent of aviable logic block is required
to implement the origianl Falcon processor when all
multipliers are utilized as shown in Figure 2. The question
is how to arrange the computation to use all multipliers
while not overusing configurable logic blocks to implement
the Falcon architecture on new FPGAs. The new modified
type of architecture is shown on Figure 3, where the mixer
and arithmetic units were changed. With these changes
which will be described in the next sections all of the
built-in DSP48E slices can used and the configurable logic
block requirement of the processor core is also reduced.

3.1. Modified Mixer Unit

The structure of the mixer unit is shown in Figure 4. This
unit contains one block of shift registers to store a window
around the currently processed cell and two additional

- 104 -



Memory Unit

Modified Arithmetical Unit

Modified 
Mixer

Template 
Memory

StateOut ConstOut TemplSelOut

LeftOut

LeftIn

RightOut
RightIn

StateIn ConstIn TemplSelIn

Figure 3: Structure of one Falcon processor core

State from memory unit
State from

right neighbor
State from

left neighbor

Figure 4: Structure of the modified mixer unit

block of shift registers which are used to store data from
the left and right neighbors of the processor. The registers
are connected serially and its outputs are also connected
to the Sx inputs of the arithmetic unit. Communication
between the neighboring processors is carried out through
the left and right inputs without affecting the arithmetic
unit. As a result the number of cycles required for the
processing is reduced which increases the performance of
the architecture and enables 100 percent utilization of the
multipliers in the arithmetic unit.

3.2. Modified Arithmetic Unit

The Sx inputs of the arithmetic unit are connected
to the state value outputs of the mixer unit while the
Tx template values are connected to the output of the
template memory. The precision of the state values is 25bit
while the inputs are 18 bit wide. All of the multipliers
and adders are implemented inside the cascaded DSP48E
slices. Using this structure the dedicated connections
between the DSP48E slices can be utilized. Therefore the
operating frequency of the arithmetic unit is the maximum

* *

S1 S2T2T1

* *

S3 S4T4T3

* *

S5 S6T6T5

* *

S7 S8T8T7

*

S9T9 g i j

R

+

Sigmoid

Snew

+ + + + + + + + +

Sold

Figure 5: Structure of the improved arithmetic unit

that the DSP slices allow. Depending on the speed grade
of the FPGA the operating frequency of the arithmetic
unit can reach 550MHz on the Virtex-5 and 650MHz
on the Virtex-6 FPGAs. Only one external element a
register is required to store the feedforward value of the
computation and it comes from the memory unit. The
modified arithmetic unit is shown in Figure 5, and it can
be used in pipelined mode.

4. Performance

Performance of the modified Falcon processor is
compared to the speed of the software simulation. In the
software simulation Intel Core 2 Duo E8400 and IBM
CellBE processors are used. To simulate CNN array
functions of the Intel Performance Primitives - Image
Processing Library (IPP IPL) was used to help to optimize
image- and vector-processing tasks. Performance of the
software simulation depends on the size of the cell array.
If the size is larger than 688×688 the performance drops to
a lower level, due to the memory bottleneck and L2-cache
memory occupancy. Even in a single Falcon processor
configuration 38 percent performance improvement can be
achieved compared to Intel Core 2 Duo processor. The
easy scalability of the array makes it possible to connect
severaly modified Falcon processor cores on one FPGA
and get even more performance. Using the previously
described architecture and utilizing all the 224 modified
Falcon processors on the Virtex-6 FPGAs 145.6 billion
cell iteration per second computing performance can be
achieved. Our Virtex-6 FPGA based solution is 364 times
faster compared to a high performance microprocessor,
using all of the modified Falcon processors during the
computation. Compared to a high performance Intel
Core 2 Duo microprocessor, for a 1024 pixel ×1024
pixel picture instead of 38 template execution per second,
13885 template execution per second can be used with the
Virtex-6 Falcon implementation.

5. Conclusions

An improved emulated digital CNN-UM architecture
implementation was successful on our prototyping boards,

- 105 -



Table 1: Comparison of different implementations
Implementations

Intel Cell Processor FPGA
Core 2 Duo 8 SPEs XC5VSX50T XC5VSX240T XC6VSX475T

Implementation type Software
(Intel IPP)[8]

Software
(Cell SDK) FPGA FPGA FPGA

Technology (nm) 45 65 65 65 40
Clock

Frequency (MHz) 3000 3200 550 550 650

Number of
Processing Elements 2 Cores 8 SPE 32 FPE 117 FPE 224 FPE

Million cell
iteration/s 400 3627 17600 64350 145600

Speedup 1 9 44 160 364
Power

Dissipation (W) 65 85 16 59 102

Area (mm2) 107 2×253 N/A N/A N/A

using the Virtex-5 SX50T and Virtex-5 SX240T FPGA
from Xilinx Inc. and implementation in simulation using
the Virtex-6 SX475T FPGA. Our solution was optimized
to the special requirements of the Virtex-5 and Virtex-6
FPGAs. The main parameters of the architecture is
described and compared to the parameters of the software
simulation of the CNN full signal range modell running on
high performance processors such as Intel Core2Duo and
IBM Cell.

6. Acknowledgements

This paper was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

References

[1] Z. Nagy, Z. Vörösházi, and P. Szolgay, “Emulated
Digital CNN-UM Solution of Partial Differential
Equations,” International Journal of Circuit Theory
and Applications, vol. 34, pp. 445–470, 2006.

[2] T. Roska, “An Overview on Emerging Spatial Wave
Logic for Spatial-Temporal Events Via Cellular Wave
Computers on Flows and Patterns,” International
symposium on nonlinear theory and its applications,
pp. 98–100, 2008.

[3] P. Keresztes, A. Zarándy, T. Roska, P. Szolgay,
T. Hidvégi, P. Jónás, and A. Katona, “An Emulated
Digital CNN implementation,” International Journal
of VLSI Signal Processing, vol. 23, pp. 291–303, 1999.

[4] Z. Nagy and P. Szolgay, “Configurable Multi-layer
CNN-UM Emulator on FPGA,” IEEE Transaction
on Circuit and Systems I: Fundamental Theory and
Applications, vol. 50, pp. 774–778, 2003.

[5] L. O. Chua and L. Yang, “Cellular neural networks:
theory,” pp. 1257–1272, 1988.

[6] S. Espejo and et.al., “A VLSI-Oriented
Continuous-Time CNN Model,” International
Journal of Circuit Theory and Applications, vol. 24,
pp. 341–356, 1996.

[7] “Xilinx product homepage,” http://www.xilinx.com,
2010.

[8] “Intel integrated performance primitives homepage,”
http://software.intel.com/en-us/intel-ipp/, 2010.

- 106 -


	Navigation page
	Session at a glance
	Technical program

