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Abstract—Most of the existing methods to extract
information about the interactions within a network of
dynamical systems starting from measured data work
well for networks with a limited number of interacting
units, though they badly scale to networks containing
hundreds of elements, the main limiting factor being
the computational complexity. This paper deals with
a method based on linear regression and particularly
conceived for identifying networks of biological neu-
rons. The method complexity scales linearly with the
number of network elements. Some examples are pro-
posed in order to validate the method and to evaluate
to what extent the quality of the information about
the interaction between two neurons is influenced by
adding up to one hundred of nodes.

1. Introduction

Extracting information about the interactions
within a network of dynamical systems starting from
measured data is a key topic in many modern applied
sciences. In particular, a major goal of neural data
analysis is to characterize how neurons that are part
of a network interact with each other. Various time se-
ries analysis techniques have been proposed for the de-
scription of interactions between dynamical processes
and for the detection of causal influences in multivari-
ate systems (e.g., see [1] and references therein). When
more than two processes are analyzed, one has to face
the problem that complex interaction structures be-
tween the processes may arise. For example, two pro-
cesses in a multivariate system not necessarily interact
directly. Therefore, bivariate analysis is often not suf-
ficient to distinguish direct and indirect interactions.

The need for quick and efficient multivariate anal-
ysis methods has increased with the growing avail-
ability of multiple parallel measurements in modern
experimental setups. Indeed, with the advent of the
multi-electrode recording technology, it is now possi-
ble to record the activity of several hundred neurons
simultaneously. Many techniques have been proposed
for application to neuron networks. Among them, be-
sides electron microscopy techniques [2], we can cite
maximum likelihood approaches [3,4], probabilistic ap-

proaches [5], and graphical approaches [1]. The appli-
cability of most of these methods to the analysis of
spike trains of more than a few neurons has been lim-
ited due to their computational complexity.

In this paper, we use a very simple identification
technique, based on a leaky integrate-and-fire (LIF)
model and on the method proposed in [6]. The main
goal is to find the "effective connectivity", i.e., the
simplest model that takes into account any observable
direct or indirect interaction between neurons and re-
produces almost the same temporal relationships be-
tween neurons in a cell assembly as those observed
experimentally [7]. The method is based on the time
instants of spike occurrences (point events) and is ap-
plied to both networks of LIF neurons and Izhikevic
neurons [8]. With respect to [6], the main difference
is that the decay time scale is assumed to be known
and equal for all neurons. This assumption is quite
reasonable (the influence of the decay time scale on
the network behavior is negligible) and allows us to
identify the system parameters through linear regres-
sion, thus making the technique applicable to networks
with hundreds of elements, since the method complex-
ity scales linearly with the neuron number. Due to
the choice of a LIF model, the method is quite reli-
able when each neuron belonging to the network to be
identified spikes regularly, whereas the results are less
accurate when the inter-spike intervals are not regular.

The proposed results concern a preliminary set of
tests, conceived to validate the method and to evalu-
ate to what extent the information about the interac-
tion between two neurons of a network is influenced
by adding up to one hundred of nodes.

2. The model

We consider a network of N interconnected neurons.
For the j-th neuron during an inter-spike interval (IST),
we use the single-compartment LIF model [9]:

Cdv(j) N

T G — V) +Iéj) +19) (1)

syn

When the voltage v(/) reaches a threshold (Vrz), the
neuron output y¥) spikes (point event) and v is re-
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set to the resting membrane potential. The output of
the j-th neuron, weighted by a synaptic coefficient, is
input to all the other neurons of the network, excepted
for the j-th neuron itself. The absence of self-feedback
is a key assumption in order to have linear regressions.

We suppose that, over a fixed time window, the j-
th neuron produces N I(fg)l + 1 spikes, corresponding to

N 1({3)1 ISI. By normalizing the state variables as follows
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we obtain the following set of normalized equations:
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By sampling the system with a step h= %, we obtain
the following discrete-time system (j =1,..., N)

x,(cjll = Ax,ij) + B [bY) 4 Zwijy(i)(kh) (5)
i#j

where A = ¢~ " and B =

solution (valid within each ISI of the j-th neuron) is

(1 - e‘ﬁ), whose explicit

k=1
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3. The identification method

At the beginning of the r-th ISI (for £ = 0), we have

xéj ) = 0, since the j-th neuron has been reset after a
spike. At the end of the considered ISI (for k = l%ﬁj)),
the j-th neuron reaches the threshold xl(—cj) = 1, thus
spiking. The same condition can be imposed for any

IST of the j-th neuron (r =1,..., NI(QI):

k9 1
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p=0

where the vector w'?) is the j-th column of the connec-
tivity matrix W, excepted for the w;; element, which
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is always set to 0. Since Y7 AR Pl = A1,

Eq. (6) can be expressed as follows:
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where z207) = Egio ! A’“5~J)_p_1y(”). Then, the sys-
tem to be solved in least squares sense is

S ~7(3)
Bz(j’l) | 1-— Akl w(J) 1
' | : D

. ) (4)
BeGNE) | 1o A | L !

We remark that the parameter 7 (decay time scale
in the linear model (1)) acts as a scaling factor for the
time axis, but also influences the regression matrix,
through the terms A and B. Then, we can choose T,
within a physically reasonable range, in order to have
a regression matrix with good condition number.

4. Validation of the method

In this section, the proposed identification technique
is applied to a simple LIF neuron network. The regres-
sion set is generated by simulating a network of LIF
neuron models (3) with bi-directional synaptic con-
nections, both excitatory and inhibitory, as sketched
in Fig. 1. All the simulations have been performed
by using forward Euler integration algorithm, with
50000 steps of length 1072 and with initial condition
0.5 for each neuron. The network can be made up
of either the two black neurons only or all the eight
black and grey neurons. In the latter case, the non-
zero elements of the weight matrix W8 are shown in
Fig. 1. The element w®, represents the influence of
the s-th neuron on the r-th one. The bias vector is
¥ =155 50 45 40 35 3.0 25 20]. For
the two-neuron network, the weight matrix W?2 is the
upper-left 2 x 2 block in W# and the bias vector b? is
made up of the first two elements of b%.

4.1. Parameters identification

We choose 7 = 1 to have a well-scaled regression
matrix and to obtain parameters which are directly
comparable with the original ones.

As a first test, we identified the model parameters
for the two-neurons subnetwork and then for the com-
plete network. As pointed out in Fig. 1, the two black
neurons are influenced only by each other, so the iden-
tification should provide almost the same results as for
the complete network. By applying the identification
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Figure 1: Simulated network.
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method to the time series generated by the network
with two neurons, we obtain the following parame-
ters (with two decimal digits precision): w2 = 5.65,
wo 1 = —8.66, by = 5.49, by = 5.00. The condition
numbers of the two regression matrices are about 610
(first neuron) and 710 (second neuron), corresponding
to singular values [2.8603 0.0047] and [2.9982 0.0042],
respectively.

If we apply the method to the network with eight
neurons, we obtain (with two decimal digits precision):

0 564 0.12 0.06 0.02 0.13 —0.05 —0.03

—8.66 0 —0.01 —0.08 0.05 —0.10 —0.02 —0.08
—0.08 9.38 0 8.89 0.11 —0.14 —0.20 —0.15

W = 0.06 —-0.08 —2.64 0 1.37 —0.02 0.04 0.04
- —0.12 —10.26 0.01 0.04 O 0.22 —0.05 —5.35
5.37 7.15 454 0.49 0.00 0 —0.04 —5.25
0.10 0.07 4.92 0.21 4.82 —0.09 O 0.04

2.37 230 2.60 250 2.79 2.18 2.79 0

and b = [5.49 5.00 4.50 4.01 3.50 3.00 2.50 2.00].
Then, as expected, the identification of the two target
weights and biases is almost the same as before.

For the chosen value of 7, the condition number of
the regression matrices is again in the order of 103,
and the largest singular value of the matrix is about
three order of magnitude larger than the other ones.
Since the biases are determined with higher accuracy,
we can guess that the largest singular value of each
regression matrix is strictly related to the bias.

In order to check the robustness of the identification
method, we perform a sensitivity test. By slightly per-
turbing one parameter (weight or bias) of the original
network, we expect that (i) the estimated parameters
do not change dramatically and (ii) the larger changes
concern the identification of the perturbed parameter.
In all cases, we performed 100 simulations and the ini-
tial condition for each neuron was fixed to 0.5.

4.2. Sensitivity to parameter variations

As a first test, we fix the biases and perturb the
element w2 of the weight matrix W (that is either
W2 or W8) in the k-th simulation (k = 1,...,100),
by replacing it with wq 2(1 + €), where € is a random
number uniformly distributed in the range [—0.1,0.1].

For the network with two neurons, the mean iden-
tified weights are wy 2 = 5.69 and wy; = —8.73, with
standard deviations 1.59 and 0.05, respectively. The
mean identified biases are by = 5.49 and by = 5.00,
with standard deviations 2 1073 and 3 10™%, respec-
tively. For the network with eight neurons, the mean
values (standard deviations) of w; 2 and wq ; are 5.49
(1.73) and —8.75 (0.05), respectively. Among the other
weights, the one with the largest variance (1.03) is
wy 3. The mean values of b; and by are 5.49 and 5.00,
with standard deviations 2 1072 and 3 10, respec-
tively (similar accuracies hold for the other biases).

If we perturb by, the results are quite similar. For
the network with two neurons, the mean identified
weights (and corresponding standard deviations) are

w2 = 7.03 (2.14) and we 1 = —8.45 (0.82). The mean
identified biases (and corresponding standard devia-
tions) are by = 5.52 (0.32) and b = 5.00 (4 1073). For
the network with eight neurons, the mean values (and
standard deviations) of w; 2 and we; are 7.47 (1.99)
and —8.49 (0.39). Among the other weights, the one
with the largest variance (0.83) is once again wy 3. The
mean values (and standard deviations) of b, and by are
5.48 (0.32) and 5.00 (2 1073). All the other biases are
identified with variances in the order of 1073.

5. Scalability of the method

In the previous section, we applied the identifica-
tion procedure to a deterministic LIF network (and a
subnetwork) with fixed topology and neuron number.
In this section, we apply the identification method to
time series generated by two different kinds of net-
works (LIF and Izhikevic) with: stochastic elements,
random one-to-all topology, and 2P neurons, where
p=1,...,7. Our attention is focused once more on
two neurons (the first two of each network), and espe-
cially on their mean firing frequency, by evaluating to
what extent this feature is influenced by increasing the
number of neurons in the network up to 128 elements.
Since the network complexity scales linearly with the
number of elements of the network, we expect that
the method is able to identify reasonably well the con-
nections between the neurons even for large networks.
Moreover, since as far as the network size increases,
the neurons tend to synchronize and to fire periodi-
cally also in the presence of stochastic terms in the
original networks, we expect that the identification re-
sults get closer to the original ones for larger p values.

For each considered model (LIF and Izhikevic), we
adopt the following protocol. For a fixed number of
neurons (27, with p =1,...,7) and for a fixed one-to-
all topology, we sort 100 random configurations with
Gaussian distribution for the weights (n = 0 and
10). The output (spike timing) of each origi-
nal network is used for a corresponding regression and
the obtained weight matrix and bias vector are used to
simulate a LIF (in any case) network according to our
reference model. All the simulations are performed by
using the forward Euler integration algorithm, with
50000 steps of length h = 1073, The value of 7 is
assumed to be unitary. Finally, the ISIs first-order
statistics for the first two neurons in the original and
identified networks are compared.

For the LIF networks, the configuration is completed
by extracting 2P random biases according to a Gaus-
sian distribution with mean 5 and variance 0.1. More-
over, we consider the presence of a stochastic neuron,
spiking with a Poissonian distribution of the ISIs (with
mean of 50 integration steps, so during the whole sim-
ulation the neuron generates about 1000 spikes) and

o =
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connected to the whole network by a random weight
configuration with Gaussian distribution (x = 0 and
o = 10). The presence of this additive neuron counters
the synchronization of the neuron networks and pre-
vents the presence of linearly dependent columns in
the regression matrix. The poissonian neuron weights
are excluded from the regression, and during the sim-
ulation of the identified network the stochastic neuron
is added again with the same statistics as before, but
with different realizations of both the process and the
coupling weights.

For the Izhikevic networks, the configuration is com-
pleted by using the model described in [8], with only
excitatory neurons. Then, the bias current of each
neuron is a stochastic Gaussian variable (u = 0 and
o = 5) during the time integration. In this case, the
identified LIF networks may produce only regular spik-
ing, then the ISI variance is negligible. On the con-
trary, owing to the presence of stochastic bias currents,
the Izhikevic networks exhibit more complex behav-
iors, with significant ISI variances. Then, in principle,
the identified LIF networks (being completely deter-
ministic) can approximate only on average the behav-
iors of the Izhikevic networks. In order to introduce a
stochastic term also in the LIF networks, one should
add a stochastic component, to be identified a poste-
riori, on the basis of the model residuals.

5.1. Results

The black lines in Fig. 2 show, for different values
of p, the mean values of the ISIs for the first (left pan-
els) and second (right panels) neurons computed over
100 simulations in the LIF networks in the presence of
a poissonian input neuron (upper panels) and in the
Izhikevic networks (lower panels). The mean values
in the identified LIF networks in both cases are repre-
sented in grey.

The comparison evidences that the identified net-
works, on average, reproduce quite accurately the ISIs
mean values. Further first-order statistic measures,
e.g., like those reported in [10], cannot be considered
here, since (as stated before) the ISIs variance in the
LIF models is negligible, even in the presence of the
considered stochastic input neuron. We point out once

=
=

Figure 2

more that, in order to model the ISIs variance of non
regularly spiking reference networks, proper stochastic
terms should be added to the identified LIF networks.
The regression for the network with 128 neurons
takes about 200 seconds in the Matlab® environment
on a PC equipped with an Intel® Core(TM)2 QUAD
CPU Q6600 @2.4GHz and an 8GB RAM memory.

6. Concluding Remarks

In this paper we have proposed a modified version
of an existing method for identifying networks of bi-
ological neurons. The main novelty element of the
proposed version is the parameter identification based
on linear regression. The method complexity scales
linearly with the number of network elements, hence
it is applicable to large size networks. To validate the
viability of the method, we have proposed a series of
preliminary tests, that produced encouraging results.

Future work will concern in primis the definition of a
more organized and coherent set of tests, the inclusion
in the identified models of a stochastic component (to
be identified a posteriori on the basis of the model
residuals), and the application of the method to real
multi-electrode recording data.
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