
Mapping of High Performance Data-flow Graphs into Programmable Logic
Devices

Csaba Nemes†,Zoltán Nagy‡,Miklós Ruszinkó§, András Kiss† and Péter Szolgay† ‡

†Faculty of Information Technology, Péter Pázmány Catholic University
Práter u 50/a, Budapest, Hungary

‡Cellular Sensory and Wave Computing Laboratory Computer and Automation Institute,
Hungarian Academy of Sciences, Lágymányosi u 11, Budapest, Hungary

§Applied Mathematics Research Laboratory Computer and Automation Institute,
Hungarian Academy of Sciences, Lágymányosi u 11, Budapest, Hungary

Email: nemcs@digitus.itk.ppke.hu, nagyz@sztaki.hu, ruszinko@sztaki.hu, kissa@digitus.itk.ppke.hu, szolgay@sztaki.hu

Abstract—In high-performance processors computa-
tion time and communication delay are comparable. Only
those design methodologies can be successful which take
care of the precedence of locality. In this article new de-
sign methodology is introduced which partitions the exe-
cution units and assigns a locally distributed control unit
to each partition. Execution and control are relatively fast
inside the partition and this results in a speed gain contrast
to the global control unit where the fan out of the wiring
can cause a slow operation. An optimization problem is
described and an algorithm is developed which targets to
find the optimal partitioning where fast local control units
can be used with relatively small area increase. The opti-
mal solution of the partitioning problem is NP complete [1]
but a reasonable algorithm can be constructed for practical
engineering applications. We have successfully designed a
greedy algorithm and tested on few test cases.

1. Introduction

Having a computational problem defined on 2D or 3D ar-
ray (NxM, NxMxL) and the operation on every element is
described as a mathematical expression, acyclic data flow
graph or UMF diagram [2]. The problem to be solved is
how to map a computational problem on a virtual array to
a given physical FPGA where area/processor (logic slices,
DSP slices), on-chip memory (BRAM) and off-chip mem-
ory bandwidth are limited. Depending on the complexity
of the operator a small amount of physical execution units
can be implemented n << NxM (in 2D case) or NxMxL
(in 3D case). The operator can be decomposed into small
basic blocks which use either the logic resources (such as
adders) or the dedicated resources (embedded multipliers)
of the FPGA. The result of this process is a Physical Cellu-
lar Machine optimized for the given application. The opti-
mization can be focused on speed, area, accuracy etc. Main
components are the on-chip memory and the specialized
execution unit.

Using current high speed DDR2/3 SDRAM and SRAM
memories data read and write operations can be carried

out in consecutive bursts. Additionally the available mem-
ory bandwidth might be fluctuating, therefore the execu-
tion unit should be halted during the computation if no data
available.

The simplest and most area efficient solution of this
problem is to use one global control unit to monitor the
state of the I/O buffers and enable the operation of the en-
tire system by using a global enable signal. The global
enable signal has very high fan-out and is hard to route
even if global wires are available on FPGA. As wire delay
dominates over gate (LUT) delay on the current state-of-
the-art FPGAs this solution results in very low operating
frequency.

One possible solution of this problem is to create a data
driven pipeline where a basic processing unit is halted au-
tomatically when no input data is available or the results
cannot be processed by the next unit. Therefore local con-
trol unit can be added to every operator (adder, multiplier).
In this case the control units are the simplest, but area re-
quirements are significantly increased by the large number
of FIFOs.

Alternative solution is to share the control unit among
several basic processing units thus the FIFO buffers inside
the groups can be eliminated significantly reducing area
requirements. Determining the parameters of the groups
carefully significant loss in operating frequency can be
avoided.

2. Resources on an FPGA

The main configurable element of the new Xilinx Vir-
tex family[3] is the Advanced Silicon Modular Block
(ASMBL). The architecture is column based where each
ASMBL column has specific capabilities, such as logic,
memory, I/O, DSP, hard IP and mixed signal. By using dif-
ferent mix of the ASMBL columns domain specific devices
can be manufactured. Currently four families are available
optimized for different application areas: logic intensive
(LX), logic intensive with serial transceiver (LXT), high
performance DPS with serial transceiver (SXT), and em-

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 99 -



bedded processing (FXT). Due to the smaller transistor di-
mensions the total net delay is mainly determined by the
wire delay, hence the CLBs of the Virtex-5 architecture are
completely redesigned. In the new architecture traditional
4-input LUTs are replaced by 6-input LUTs. Each CLB is
divided into two slices and every slice contains 4 6-input
LUTs, 4 registers, and carry logic.

In the new FPGAs the simple multipliers are replaced by
complex DSP blocks called XtremeDSP (DSP48E) slices.
The heart of the DSP48E is a 25bit by 18bit 2’s com-
plements signed multiplier. It also contains a 48bit ALU
unit with optional registered accumulation feedback. Ad-
ditionally, hardwired 17 bit shift capability simplifies the
construction of large multipliers, while optional pipeline
registers enable even 550MHz operation. The currently
available largest Virtex-5 device contains 1056 DSP48E
slices, while the largest member of the recently introduced
Virtex-6 family contains 2016 DSP48E slices.

3. SystemC and Mathematical representation

Using a high-level description language the computa-
tionally intensive algorithm can be efficiently described by
using the data-flow model. This model can be transformed
to an abstract mathematical graph representation, where
operations and connections are represented by nodes and
arcs of the graph respectively.

In case of distributed control units data driven pipelines
are created where basic processing units are halted auto-
matically when no input data is available or the results can-
not be processed by the next unit. Synchronization of the
processing elements is done by using FIFO buffers.

If we assign one control unit to every processing unit
and attach a FIFO to each of its output we obtain a re-
stricted case of the Kahn process networks [4] where inde-
pendent processes are communicating over bounded FIFO
channels. Each processing unit can be treated as a process
because it reads its input from a FIFO attached to previous
processor or the memory interface and writes the updated
result into a FIFO. The enable signal and the FIFO control
signals are local to the given processor; their state depends
on the state of the connected FIFOs.

However it is more practical to partition the processing
units into groups where each group has one control unit. In
this case FIFOs inside the locally controlled groups can be
omitted. The disadvantage of this solution is that each con-
trol unit should handle more FIFOs, which results in more
complex control logic and smaller operating frequency as
shown in Figure 1.

There is a design trade of between the speed of the con-
trol unit and the area requirements of the circuit. Larger
partitions have more inputs and outputs which results in a
slower control unit, on the other hand small partitions in-
crease the area requirements of the circuit because of the
overhead generated by the larger quantity of FIFOs. We
can formulate an optimization problem where we would

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100

200

300

400

500

600

700

800

900

1000

Number of controlled FIFOs

O
p

er
a t

in
g

 f
re

q
u

e n
cy

 (
M

H
z)

Figure 1: Operating frequency of the control block. Red
line indicates the operating frequency of the multiplier unit.

like to enlarge the size of the locally controlled groups as
long as the operating frequency of our control blocks does
not limit the operation of the entire circuit.

Mathematical formulation of the partitioning problem:

1. Optimization: Make partitions from the nodes of a di-
rected acyclic hyper graph where the number of cut
edges are minimal. (In this case a hyperlink can be
cut many times.)

2. Constraint: Any given partition shall have less than or
equal connection to the other partitions than a given
upper threshold.

Finding the optimal solution is an NP-complete problem,
however our goal is to find a reasonable solution in poly-
nomial time. The result of the algorithm will be an op-
timized graph, where the control is local and data driven.
According to our experiments one control unit can han-
dle 10 input/output FIFOs without decreasing the expected
450MHz operating frequency of the entire data path signif-
icantly (see Figure 1).

In our implementation the input of the algorithm is an
initial solution of a computationally intensive task imple-
mented in C++ via the SystemC library [5]. The only re-
striction for the implementation is that the classes of the
modules have to inherit our interfaces as well. This is an
elegant way to extend the SystemC model with some ex-
tra information without the modification of the library it-
self. While the modeling features of the SystemC library
are still available, the extra information is used to build up
the graph representation via the Lemon Graph Library [6].

4. The proposed partitioning algorithm

Hereby we propose a heuristic greedy algorithm for
the previously described partitioning problem. While the
pseudo code of the algorithm is shown in Algorithm 1. the
key steps are also summarized below:

- 100 -



Algorithm 1
function runPartitioning(G,T):

1: Assign a number to each node, which indicates the
number of cycles required for the data to reach the
given node through the pipeline.

2: Sort the nodes based on the assigned numbers.
3: repeat
4: Create a new partition P.
5: Move the lowest-numbered node, which is unparti-

tioned to P.
6: growSubgraph(P,T)
7: until there is any unpartitioned node

function growSubgraph(P,T):
1: for all N nodes which gets input from one of the nodes

of P do
2: P1 := P
3: Move N to partition P1.
4: Move all ancestor nodes of N which is unpartitioned

to P1.
5: end for
6: if the number of the incoming and outgoing arcs of the

subgraph ≤ T then
7: P := P1
8: growSubgraph(P,T)
9: break

10: end if

1. The input of the algorithm is a directed acyclic hyper-
graph.

2. Based on the delays of the arithmetic units different
levels can be assigned to the nodes. These levels in-
dicate the number of cycles required for the data to
reach the given node through the pipeline.

3. Based on the levels the nodes are numbered. The order
of two nodes on the same level are arbitrary but nodes
on lower level always have lower numbers than the
ones on higher levels.

4. The algorithm starts from the lowest-numbered node
and a subgraph is grown from this node. After the
subgraph cannot be grown further the first partition is
created from the nodes of the subgraph.

5. In every upcoming iteration the lowest-numbered
node id selected which has not been partitioned yet. If
there are no more unpartitioned nodes the algorithm
ends.

6. The subgraph is also created iteratively. In the first
iteration the subgraph contains only one node. In ev-
ery upcoming iteration the algorithm tries to deepen
the subgraph by selecting one node “below” the sub-
graph and includes all the ancestors of the selected
node which have not been partitioned yet.

1: ...
2: Prod<INSIZE,INSIZE,OUTSIZE> p1,p2;
3: Sum<INSIZE,INSIZE,OUTSIZE> s1;
4: ...
5: p1− >c(signal1);
6: p2− >c(signal2);
7: s1− >a(signal1);
8: s1− >b(signal2);
9: ...

Figure 2: Simple SystemC code snippet

p1

s

signal1

p2

signal2

Figure 3: Simple data-flow graph generated from Figure 2.

7. Extension of the subgraph is only successful if the
number of incoming and outgoing arcs of the sub-
graph does not exceed the upper threshold.

8. If no node can be selected below the subgraph which
is suitable to a successful extension the subgraph can-
not be extended and the algorithm is continued from
step 4.

5. Examples

5.1. Simple SystemC code and its graph representation

Simple SystemC code fragment and an equivalent graph
representation is shown in Figure 2 and Figure 3 respec-
tively. Sum and Prod modules are base modules which are
already implemented in SystemC. Instances of these mod-
ules will be the nodes of the graph. Signal1 and signal2 are
wires corresponding to the interconnections.

5.2. Base template operation of the CNN state equation

Our first test case was the frequently used 3x3 template
operation of the CNN state equation [7]. It can be regarded
as a convolution with a 3x3 kernel where 9 state values
should be multiplied by 9 template parameters. The final
result is computed by summing the partial results and the
old state value. However this example is relatively simple
and has a limited size, it is ideal for the demonstration of
our algorithm. The result of the algorithm is shown in Fig-
ure 4. The first partition (partition#1) is grown from the
top-left node of the graph (node 1). The algorithm extends
the partition by stepping one level down and recursively se-
lecting all the ancestors of the newly founded node in every
iteration, therefore nodes 2 and 12 are added to the parti-
tion in the first iteration. Partitions are extended as long as
the number of input/output arcs are still smaller then 10,

- 101 -



partition#1(cuts: 9)

partition#2(cuts: 10)

partition#3(cuts: 6)

*(1)

+(12)

*(2)*(3)

+(13)

*(4)

+(17)

+(20)

*(5)

+(14)

*(6)*(7)

+(15)

*(8)

+(18)

+(21)

*(9)

+(16)

+(10)

D(11)

D(19)

OUTPUT

INPUT

Figure 4: Result of the partitioning algorithm on the graph of the CNN template operator. The total number of cut arcs is
23.

which was determined earlier as an upper threshold. In this
example the first two extensions are successful. The third
extension failed because the extended partition would have
17 input/output arcs. The second partition (partition#2) is
grown from the next non-partitioned node (node 5) which
has the lowest number.

Area requirements and operating frequency of the opti-
mized control unit are shown on Table 1. The optimized
control unit requires less additional area than fully dis-
tributed control unit but operates on higher frequency than
global control unit.

6. Conclusions

A design methodology is described to implement cus-
tomized high-performance data-flow architectures using
distributed control unit. A data-flow graph of a mathemat-
ical expression constructed from a high-level language de-
scription is given. An optimization problem has been de-
scribed to efficiently partition the execution units between
control structures without significantly increasing the area
of the circuit or decreasing the operating frequency. A
heuristic algorithm has been proposed to give an affordable
solution. The number and the size of the FIFOs are opti-
mized in the design process to reach high speed with small
increase in implementation area. The operation of the al-

Table 1: Implementation results of the control unit
Fully distributed
control unit

Global control
unit

Optimized
control unit

FIFO
Area
(slice)

Input/output 549 549 549
Inside 0 855 98
All 549 1404 647

Clock frequency (MHz) 423,908 881,057 512,032

gorithm was presented by optimizing a simple CNN state
equation example.

Acknowledgments

This paper was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

References

[1] Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

[2] T. Roska, “An overview on emerging spatial wave logic
for spatial-temporal events via cellular wave computers
on flows and patterns,” Proc. of NOLTA 2008, pp. 98–
100, 2008.

[3] “Xilinx product homepage,” http://www.xilinx.com,
2010.

[4] T. M. Parks, “Bounded Scheduling of Process Net-
works,” Ph.D. dissertation, University of California at
Berkeley, 1995.

[5] “The open systemc initiative,”
http://www.systemc.org/, 2010.

[6] “Lemon graph library,”
http://lemon.cs.elte.hu/trac/lemon, 2010.

[7] P. Nagy, Z. Szolgay, “Configurable multilayer cnn-um
emulator on fpga,” Circuits and Systems I: Fundamen-
tal Theory and Applications, IEEE Transactions on,
pp. 774 – 778, 2003.

- 102 -


	Navigation page
	Session at a glance
	Technical program

