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Abstract—Some algorithms adopt the Metropolis algo-
rithm to optimize the communication cost and fault toler-
ance of an overlay network. The intended advantage of
using the Metropolis algorithm is the avoidance of getting
trapped in local optima; however there has been no con-
vincing evidence. This paper studies one such algorithm to
examine it.

1. Introduction

Peer-to-peer systems use an overlay network, a virtual
network built on top of the physical network, to route mes-
sages to destination. Overlay networks can be classified
into two types: structured and unstructured. Structured
overlay networks are tightly controlled and constructed by
a coordination mechanism, such as a distributed hash table
(DHT). Structured overlays can efficiently search data and
disseminate messages but exhibit relatively low robustness
to node failures or frequent churn.

Unstructured overlay networks maintain only the list
of addresses of neighbor nodes at each node and rely on
no rigid mathematical structure. They are typically con-
structed without taking the physical network topology into
consideration. This may cause a significant mismatch be-
tween the physical network topology and the overlay net-
work topology, which in turn results in a large volume of
redundant traffic [1].

To solve the topology mismatch problem, some algo-
rithms adopt to optimize the overlay topology: Using the
Metropolis algorithm, these algorithms iteratively reshape
the overlay topology so that the mismatch can be gradually
reduced [2, 3].

The Metropolis algorithm is originally used in Monte
Carlo simulations to obtain random samples from a proba-
bility distribution. The idea is to perform random walk in
the solution space so that the points on the walk are dis-
tributed according to the required probability distribution.

Its adaptation to topology optimization replaces random
walk with a sequence of random, small topology changes.
Each node in a network periodically initiates a local topol-
ogy change. If the change leads to a better network topol-
ogy, then the change will be accepted and performed. On
the other hand, even if the change results in a worse topol-
ogy, the change will be accepted with some probability to

avoid getting stuck at local optima.
The simulation results presented in [2, 3] report that the

algorithms adopting the Metropolis algorithm exhibit good
performance. However there has been little evidence of
the benefit of using the Metropolis algorithm. For exam-
ple, it has been unclear whether the Metropolis algorithm
performs better than simple hill-climbing which takes no
consideration in avoiding trapping into local optima. To
overcome this lack, this paper evaluates the effects of using
Metropolis scheme on the performance and resiliency of
an overlay. Specifically we focus on Localiser [2], one of
the overlay construction algorithms adopting the Metropo-
lis algorithm.

2. Unstructured Overlay Networks

We model the overlay network topology as a undirected
graph G = (V, E) with a vertex set V and an arc set E. A
vertex corresponds to a node and an arc corresponds to a
link. We let n denote the number of nodes; i.e., n = |V |.
The physical proximity is modeled by a communication
cost function c : V × V → R. c(i, j) represents the
communication cost between nodes i and j. We assume
c(i, j) = c( j, i) > 0 for any i, j(, i) ∈ V .

We evaluate the overlay network with respect to two
properties.

• Locality awareness

A large amount of traffic caused by peer-to-peer ap-
plications is routed along the path in the overlay net-
work. In order to avoid overloading the network and
to reduce message latency, the overlay should reflect
the underlying network topology. Specifically, a node
should have neighbors that are close to it in the physi-
cal network.

• Degree distribution

The resiliency of the overlay network critically de-
pends on the distribution of node degrees. The fail-
ure of a node with a smaller degree is more likely
to break the connectedness of the network. Thus all
nodes should have the same degree, unless node fail-
ures do not occur uniformly randomly.
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3. Localiser

Localiser is the algorithm proposed by Massoulié et al.
It relies on the Metropolis scheme to optimize the commu-
nication cost and fault tolerance of an overlay network [2].

The basic idea behind the Metropolis scheme is as fol-
lows: This is a simple iterative scheme for minimizing a
function f on a domain D. Starting from any point x ∈ D, a
move to a nearby point y is proposed. The move is then ac-
cepted with some probability which decreases as f (y)− f (x)
increases. The reason for allowing moves that may increase
f is to avoid getting trapped in local optima. If the move
is rejected, then the new point remains at x. The propose-
accept process is repeated from the new point.

The global cost of an overlay network topology is evalu-
ated by the following function.

f (G) = w
∑

i∈V(G)

d2
i +

∑
(i, j)∈E(G)

c(i, j)

where w is a weight parameter, di is the degree of node i
and c(i, j) is the communication cost between node i and
node j.

In Localiser, each move corresponds to a local topology
change, as illustrated in Figure 1. The topology change is
iteratively initiated by each node. The outline of the algo-
rithm for local topology change is as follows:

1. Choose two of its neighbors, say node j and node k at
random, and measure the communication cost c(i, j)
and c(i, k).

2. Send messages to node j and node k to request d j and
dk. Nodes j and k send back respectively d j and dk. In
addition, node j sends back its estimate of c( j, k).

3. Evaluate the cost change resulted from replacing link
(i, j) with ( j, k) as depicted in Figure 1. The cost
change ∆ f can be calculated locally by the following
expression:

∆ f = 2w(dk − di + 1) + c( j, k) − c(i, j)

4. Perform the replacement of the links with probability
p = min

((
e−∆ f /T di(di−1)

dk(dk+1)

)
, 1
)
.

Note that the number of links is conserved, because the
algorithm only moves links.

Here the key parameter is T , which is used to compute
the probability of accepting a “bad” move. This parame-
ter is called temperature and is used to specify a trade-off
between accuracy and speed of convergence. That is, if
the temperature is high, then bad moves are accepted with
higher probability, resulting in high capability of local op-
tima avoidance. On the other hand, if the temperature is
low, then an equilibrium is reached fast.

Figure 1: Localiser algorithm

4. Simulations

In this section we present detailed simulation results us-
ing PeerSim, a cycle based simulator. We assume that ev-
ery node initiates a local topology change in each cycle.
We evaluate Localiser in terms of the following three cri-
teria: (1) average communication cost, (2) degree distribu-
tion, and (3) resilience to node failures. For each combina-
tion of parameter values, we perform 10 runs and average
the obtained values.

4.1. Network Model

To obtain the communication cost function c, we con-
struct physical two network topologies using the Waxman
model [4] and the Transit-Stub model [5]. Each topology is
composed of 100 routers to which end nodes are randomly
attached.

We assign to every physical link 50ms as communica-
tion cost. The communication cost between two nodes in
the overlay is then set to the summation of the communi-
cation cost along a physical path between the two nodes. If
there are multiple paths, then the shortest one is selected to
compute the communication cost.

We use Scamp [6] to build the initial topology of the
overlay network. Scamp is a fully decentralized self-
organizing membership protocol for building unstructured
overlay networks.

4.2. Average Communication Cost

Figures 2 to 5 present the average communication cost
between any pair of adjacent nodes. Figures 2 and 4 show
the results for the network with 5000 nodes. Figures 3
and 5 present those for the network with 10000 nodes. The
horizontal axis represents cycles, while the vertical axis
represents the average communication cost between two
neighbors. Different curves correspond to different tem-
perature values T .

As can be seen in these figures, smaller T leads to fast
convergence. Importantly, no case was observed where the
network was trapped with local optima, even if T was very
small. That is, smaller T always resulted in smaller com-
munication cost. No clear qualitative difference is observed
between the Waxman model and the Transit-Stub model
and between different network sizes.
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Figure 2: Average Communication Cost (Waxman, n =
5000)
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Figure 3: Average Communication Cost (Waxman, n =
10000)

4.3. Degree Distribution

Here we present how uniform the degree distribution will
be when Localiser is used. We compare node degree dis-
tribution between the initial overlay network and the opti-
mized topology obtained when 300 cycles elapse.

Figure 6 shows the degree distribution for the Wax-
man model, while Figure 7 shows that for the Transit-Stub
model. The number of nodes is set to 5000. These graphs
have degree on the horizontal axis and the number of nodes
with a particular degree on the vertical axis.

We varied the value of T but the results obtained were
almost the same. The results shown in the figures were
obtained when T = 1.

As can be clearly seen, node degrees concentrate near the
average after 300 cycles. No clear difference is observed
between the two physical network models.

4.4. Resilience to Failures

In order to assess the resilience to failures, we measure
the number of network partitions in the presence of random
node failures. In graph theoretic terms, a network partition
is a connect component of the graph G with failed nodes
and their incident links removed.
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Figure 4: Average Communication Cost (Transit-Stub, n =
5000)
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Figure 5: Average Communication Cost (Transit-Stub, n =
10000)

We compare the initial overlay network and the one ob-
tained when 300 cycles elapse.

Figures 8 and 9 depict the results obtained when the
Waxman model and the Transit-Stub model are used. The
horizontal axis represents the ratio of failed node. The ver-
tical axis represents the number of network partitions. The
number of nodes is set to 10,000.

Again, we observed that the value of T has almost no
effect on the results. Thus we only show the result obtained
when T = 1.

The improvement in resilience is substantial in both
models. For example, even if 50% nodes have failed, the
optimized network does not loose the connectedness.

5. Conclusion

In this paper, we conducted simulation experiments to
evaluate the effects of using the Metropolis algorithm in
the context of overlay topology optimization. We focused
on the Localiser algorithm which adopts the Metropolis al-
gorithm for iterative topology reshaping.

To see the effects, we varied the value of T , the tem-
perature parameter that dictates the trade-off between con-
vergence speed and local optima avoidance. The results
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Figure 6: Degree Distribution (Waxman, n = 5000)
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Figure 7: Degree Distribution (Transit-Stub, n = 5000)

obtained indicated that smaller T always leads to a faster
convergence to a state where the average communication
cost is low. More importantly, no single case was observed
where the optimization is trapped in local optima. This can
be explained by the property of the Localiser algorithm:
In the algorithm, every node can perform small topology
change. Because of the large number of these possible
moves, the network always has a good chance of selecting
a move that improves the topology.

We leave as future work to see if the obtained results can
be generalized to other algorithms that use the Metropolis
algorithm, such as the SAP2P protocol [3]. To this end, we
plan to conduct further simulation studies.
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