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Abstract—Optimization of phase response curves for
stochastic synchronization and desynchronization induced
by common Poisson noise is considered. By solving the
Euler-Lagrange equation giving the extremum of the Lya-
punov exponent, the optimal phase response curve for
stochastic synchronization and desynchronization are ob-
tained. We show numerical examples of the stochastic
synchronization and desynchronization with the optimal
PRCs.

1. Introduction

Synchronization phenomena of rhythmic elements at-
tract much attention and are extensively studied in diverse
fields [1]-[7]. Recently, it has been reported that synchro-
nization of uncoupled oscillators is induced by common
random driving signals such as Gaussian [9][8] and Pois-
son noise [10]-[12] . This phenomena, termed stochastic or
noise-induced synchronization, may explain synchronous
behavior of various systems ranging from lasers [3] and
electric circuits [4] to spiking neurons [5][6] and ecologi-
cal populations [7].

Stability of the synchrony is often quantified by the
Lyapunov exponent, which measures the mean exponen-
tial growth rate of small difference between two oscilla-
tors states. For the case that the oscillators are driven by
weak Gaussian noise, it was shown by Teramae and Tanaka
that the Lyapunov exponent takes negative values and syn-
chrony is induced for arbitrary phase response curves [9].
Abouzeid and Ermentrout obtained the optimal shape of the
phase response curve (PRC) for stochastic synchronization
by minimizing the Lyapunov exponent, which was nearly
sinusoidal [8].

This prompts two questions. (i) What is the optimal
shape of the PRCs to yield the most efficient stochastic
synchronization for other driving signals? (ii) Are there
any PRCs that induce stochastic desynchronization if the
driving signal is not weak Gaussian?

Here we consider the case that the oscillators are driven
by common Poisson noise. By solving the Euler-Lagrange
equation, we calculate the PRCs with which the Lyapunov
exponent takes extremum. We show that the optimal PRC
for stochastic synchronization mutates from a sinusoid to
a sawtooth by increasing its squared amplitude. We also

show that stochastic desynchronization can occur for Pois-
son driving case and calculate the optimal PRC for that.
Synchronization and desynchronization processes of the
oscillators with the optimal PRCs are demonstrated by nu-
merical simulations.

2. Stochastic synchronization and desynchronization

2.1. Poisson-driven oscillators

Let us consider that a pair of uncoupled oscillators is
driven by common Poisson impulsive noise with constant
amplitude:

θ̇1(t) = ω +

N(t)∑
n=1

G(θ1)δ(t − tn),

θ̇2(t) = ω +

N(t)∑
n=1

G(θ2)δ(t − tn), (1)

where θ1,2 ∈ [0, 1) are phase variables of the oscillators, ω
is their natural frequency, N(t) is a Poisson process of rate
λ, {t1, t2, · · ·} are arrival times of the Poisson impulses, and
G(θ) is the PRC of the oscillators.

2.2. Lyapunov exponent

The Lyapunov exponent Λ, which quantifies the expo-
nential growth rate of small phase differences between the
oscillators ∆θ(t) = θ1(t)−θ2(t), is given in terms of the PRC
as

Λ = λ

∫ 1

0
dθP(θ) ln

∣∣∣1 +G′(θ)
∣∣∣ , (2)

where P(θ) is a stationary PDF of the phase θ given by a
stationary solution of the Frobenius-Perron equation corre-
sponding to Eq. (1) [10]-[12].

We assume that the impulses are sparse, i.e., the Poisson
rate λ is small. In this case, P(θ) can be approximated to
be uniform, namely, P(θ) ' 1 and the Lyapunov exponent
is approximately given by [10][11]

Λ = λ

∫ 1

0
dθ ln

∣∣∣1 +G′(θ)
∣∣∣ . (3)
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2.3. Euler-Lagrange equation

We try to obtain the optimal shape of G(θ) for synchro-
nization [or desynchronization] by minimizing [or maxi-
mizing] Λ with the constraint on its squared amplitude,

K[G] =
∫ 1

0
G(θ)2dθ − A = 0, (4)

and examine the dependence of the optimal PRC on the
parameter A that controls the squared amplitude. This con-
straint excludes the possibility of divergent G(θ) yielding
arbitrarily negative or positive Lyapunov exponents, which
is non-physical.

By Lagrange multiplier method, the optimal PRCs are
found with which the following action S [G] takes the ex-
tremum:

S [G] = Λ[G] + µK[G] (5)

=

∫ 1

0

{
λ ln
∣∣∣1 +G′(θ)

∣∣∣ + µ (G(θ)2 − A
)}

dθ (6)

=

∫ 1

0
L(G(θ),G′(θ))dθ, (7)

where µ is a Lagrange multiplier, and L(G(θ),G′(θ)) is a
Lagrangian. The corresponding Euler-Lagrange equation
is given by

d
dθ
∂L
∂G′
− ∂L
∂G
= 0. (8)

⇒ G′′(θ) = −2µ
λ

G(1 +G′)2. (9)

By solving this equation, we obtain the optimal PRCs for
stochastic synchronization and desynchronization.

3. Optimal PRCs for Poisson driving case

3.1. Stochastic synchronization

If the parameter A, that gives the squared amplitude of
the PRC, is sufficiently small, the PRC can be approxi-
mated as G(θ) = cZ(θ), where Z(θ) is the phase sensitivity
function [13]. Substituting this into equation (9) and taking
the c→ 0 limit, we obtain the Euler-Lagrange equation

Z′′(θ) = −2c2µ

λ
Z, (10)

which yields sinusoidal Z(θ) for µ > 0 and is consistent
with the previous work [8]. On the other hand, if we ig-
nore the constraint by the parameter A, G(θ) = −θ + const.
is a trivial solution to equation (9), which gives a saw-
tooth. Thus, when the squared amplitude of G(θ) is con-
trolled, mutation of the optimal PRC between the two lim-
iting shapes is expected. To confirm this, we numerically
calculated a family of solutions to equation (9) using the
shooting method [14].

When the Lagrange multiplier µ > 0, the optimal PRCs
for synchronization are obtained. Figure 1(a) shows the re-
sults, where the optimal solutions are wrapped within the
range [−0.5, 0.5) by taking modulo 1. All solutions lay
within the plotted region, and no other solutions outside
of this region were found. As expected, we see that the
optimal PRC is almost sinusoidal when the parameter A is
small. As A is increased, the optimal PRC gradually de-
viates from the sinusoid and approaches a symmetric saw-
tooth shape. Correspondingly, the Lyapunov exponent Λ
plotted in the lower-right panel becomes more negative and
tends to diverge.

Numerical examples of the stochastic synchronization
process with the optimal PRCs are shown in figure 1(b)-
(d). 30 oscillators are driven by common Poisson impulses
of rate λ = 0.2. The natural frequency of the oscillators is
fixed atω = 1.0. In each panel, the Lyapunov exponent cal-
culated from equation (3) is shown at the top. As we see,
the more the Lyapunov exponent gets negative, the more
stochastic synchronization is facilitated.

3.2. Stochastic desynchronization

Are there PRCs that lead to desynchrionization? No such
PRC exists for weak Gaussian driving case, or equivalently,
for the case that the parameter A is sufficient small [9]. If
the impulse is not that weak, however, there exist PRCs that
yields positive Lyapunov exponent [11]. What shape is the
optimal for desynchronization?

We varied the Lagrange multiplier in the negative range,
µ < 0, and found the optimal PRCs for desynchronization.
As shown in figure 2(a), optimal PRC exhibits a sharp cusp
at θ = 0 when µ is sufficiently negative, and gradually ap-
proaches to a sawtooth as µ increases. The Lyapunov ex-
ponent gradually increases as we increase the parameter A
[Uppre-right window in Figure 2(a)].

Numerical examples of the stochastic desynchronization
with the optimal PRCs are shown in figure 2(b)-(d).. Nu-
merical setup of the common Poisson noise and the natural
frequency of each oscillator is the same as in figure 1. The
Lyapunov exponent calculated from equation (3) is shown
at the top of each panel. We see that as the Lyapunov expo-
nent gets larger, the more the stochastic desynchronization
is facilitated.

4. Summary

We considered the optimization problem of the PRC
for stochastic synchronization and desynchronization of
limit-cycles oscillators by common Poisson noise. Using
the Lagrange multiplier method, we sought the PRCs that
gave extremum of the Lyapunov exponent. We found that
the optimal PRC for stochastic synchronization mutated
from sinusoidal to sawtoothed by increasing its squared
amplitude. We also found the optimal PRC for desyn-
chronization. By numerical simulations with the optimal
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PRCs, stochastic synchronization and desynchronization
were demonstrated.

Acknowledgments

The authors would like to thank NOLTA2011 organizing
committee members for their fruitful suggestions and com-
ments. S. H. is supported by the GCOE program “The Next
Generation of Physics, Spun from Universality and Emer-
gence” from MEXT, Japan. H. N. thanks financial support
by MEXT, Japan (grant no. 22684020).

References

[1] A. T. Winfree, The Geometry of Biological Time
(Springer, New York, 2001)

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Syn-
chronization (Cambridge University Press, England,
2001).

[3] A. Uchida, R. McAllister, and R. Roy, Phys. Rev.
Lett. 93, 244102 (2004).

[4] K. Yoshida, K. Sato, and A. Sugamata, J. Sound and
Vibration 290, 34 (2006).

[5] Z. F. Mainen and T. J. Sejnowski, Science 268, 1503
(1995).

[6] R. F Galán, N. Fourcaud-Trocmé, G. B. Ermentrout,
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Figure 1: Optimal PRCs for stochastic synchronization. (a)
Numerical solutions of the Euler-Lagrange equation (9) ob-
tained by the shooting method. The dashed line shows the
limiting sawtooth solution. The inset plots the dependence
of the Lyapunov exponent Λ on the parameter A. (b)-(d)
Numerical realizations of the stochastic synchronization
process with the optimal PRCs. In each panel, the corre-
sponding PRC is shown in the left panel.
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Figure 2: Optimal PRCs for stochastic desynchronization.
(a) Numerical solutions of the Euler-Lagrange equation (9)
obtained by the shooting method. Small inset at the lower-
right plots the dependence of the Lyapunov exponent Λ
on the parameter A. (b)-(d) Numerical demonstrations of
the stochastic desynchronization process with the optimal
PRCs. In each panel, the corresponding PRC is shown in
the left panel.
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