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Abstract— The goal of this paper is to introduce an
improved tracking framework, which exploits dynamic
feature and signature selection techniques for data
association models. It performs robust multiple object
tracking in a noisy, cluttered environment with closely
spaced targets. This method extends the back-end
processing capabilities of tracking systems by creating
a two-level hierarchy between the parallelly extracted
features. These features are dynamically selected based
on a spatio-temporal consistency weight function, which
maximizes the robustness of data association, and reduces
the overall complexity of the algorithm.

1. Introduction

Multiple object or target tracking is an important task
in computer vision applications. However, it can become
a challenging problem, especially if the object is in
a dynamically changing environment. A number of
computer vision applications could be characterized by
two complex stages of processing. The first stage is
the topographic image acquisition, which may include
pre-processing, image segmentation, and post-processing.
The second stage is a non-topographic sensing which
includes feature-signature extraction, data assignment, and
state-prediction. High resolution spatio-temporal detection
can be accomplished using topographic or cellular
processing hardware, such as the Cellular Neural Network
(CNN) [1]. The multiple object tracking back-end is
usually accomplished using serial Digital Signal Processors
(DSP). Therefore, the numerical complexity of the tracking
algorithm is crucial in order to meet the systems real-time
demand. This paper focuses on object tracking using
dynamic data association and its spatio-temporal signature
analysis. Application areas may include traffic monitoring,
vehicle navigation, automated surveillance and biological
applications.

2. Dynamic Multiple Target Tracking Framework

Multiple target tracking can be defined as estimating
the trajectory of objects in the image plane as they move
around in the scene [2]. Generally, an object segmentation
algorithm runs on each frame of the video flow in order

to detect objects. This can be done on a CNN-like
massively parallel topographic hardware to achieve high
spatio-temporal resolution video flow processing. The
detected objects are then assigned to consistent labels,
called tracks [3]. The temporal analysis of tracks can be
used to identify and select features that best represent each
object. The final goal of target tracking is to determine the
position of an object or a bounding box on each frame of
the video sequence. Our algorithm follows a bottom-up
approach:

1. Pre-processing of input video flow
2. Parallel image segmentation algorithm
3. Post-processing of segmented video frame
4. Image labeling
5. Object shape and appearance representation
6. Parallel image feature extraction
7. Image feature normalization and selection
8. Assignment of object to tracks based on dynamic

feature selection
9. Feature signature analysis

Steps 1–3 can be implemented on CNN-type hardware.
Pre-processing of each video frame is an important step
to eliminate unwanted noise, and to condition the signal
for further analysis. Throughout the evaluation, Gaussian
filtering was employed that can be approximated on the
CNNs resistive grid. The time or scale parameter depends
on the amount of noise in the scene. The range of
pixel intensity values was converted to I ∈ {−1; 1}NM

where N and M are the width and height of the image.
In case of color processing, each chromatic channel
is processed separately (see subsection 2.3 Hierarchical
Feature Extraction).

For post-processing, basic mathematical binary
morphological [4] operators were used. The aim was to
connect fragmented objects with the closing operation,
and to clear individual pixels created by the “non-perfect”
segmentation algorithm.

Steps 4–9 are typical serial DSP-like processing. Each of
the connected components is labeled on the binary image.
A number of features are extracted from the connected
components for the dynamic tracking. The results of
feature signature analysis (8) provide a feedback to the
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dynamic feature analysis (6) in order to calculate the track
consistency metric (see subsection 2.4 for details).

2.1. Motivation

The motivation for employing dynamic feature selection
for multiple object tracking emanates from the need to
reduce the complexity of data association steps of the the
overall algorithm. Let x and y be d-dimensional vectors,
where each component corresponds to a feature value. The
two most widely used distance metrics are theL1 city block
(eq. 1) and L2 Euclidean (eq. 2) metrics.

L1 : d1(x, y) = ‖x, y‖1 =

d∑
n=1

|x(n) − y(n)| (1)

L2 : d2(x, y) = ‖x, y‖2 =

√√√ d∑
n=1

(x(n) − y(n))2 (2)

The best feature will provide the maximum interclass
distance between objects. Increasing the feature space
dimensionality will increase the discriminative power.
However, noisy channels can decrease the robustness of
the system. Therefore, the algorithm should try to select
as few salient features as possible for data association.
This decreases the number of features that need to be
extracted. There are existing methods for dimensional
reduction, such as Principal Components Analysis (PCA)
[5]. These methods usually require a training set or block
processing for dimension reduction. The feature selection
method explained in this paper is a recursive one; it has
a relatively low computational complexity and is able to
successfully select a set of salient features in a changing
environment.

2.2. Simulation Videos

The algorithm was evaluated on three computer
generated video flows. The first video Scene 1 (Shapes)
contains five dynamically changing objects. See Figure 1
for a demonstration on three objects. Each object is able
to change its location, visibility, orientation, color, shape,
noise, and inner-structure according to the following list:

• Location: [0–1]
• Visibility: [0–1]
• Orientation: [0–360◦]
• Color: [red, green, cyan, blue]
• Shape: [circle, triangle, square, pentagon]
• Noise: [on, off]
• Inner structure: [dots, lines, concentric circles]

The second video flow is called Scene 2 (Bipeds).
This scene contains walking humans with crossing and
overlapping paths; they are in partial and full occlusion,
entering and exiting the scene. The third video flow

Figure 1: Demonstration of the computer generated
simulation video flow containing dynamic feature
transformations of the objects. The dynamic
transformations include location, color, shape, noise
and inner structure changes.

is called Scene 3 (Cars). The first two scenes contain
non-rigid objects, while the third scene contains only rigid
objects. Figure 2 shows actual frames from all three video
flows. The noisy version of the simulation videos had
S NRdB = 15.

Figure 2: Computer generated video flows that were used
in the algorithmic evaluation. From left to right: Scene 1 (5
dynamically changing shapes), Scene 2 (6 Bipeds), Scene
3 (4 Cars)

2.3. Hierarchical Feature Extraction

The input image is highly redundant. The
transformation, to reduce the dimensionality of input
data while keeping relevant information content, is
called feature extraction. The result of the segmentation
algorithm is a binary mask, where every pixel corresponds
to a background or foreground pixel. A set of features
were extracted over the foreground that can identify and
describe each object in a given frame. These features are
grouped into six statistically independent main feature
groups. The two-level feature extraction is summarized
in Table 1. In the current framework, each main feature
group can be weighted separately.

The position feature group contains features associated
with the location and its derivatives of each connected
foreground pixels on the mask image. The second group,
describes the size of each object. The shape feature group
contain features that represent the shape of an object such
as eccentricity (ratio of length and width of an object),
extent (ratio of the area of an object to the area of the
bounding box) and solidity (ratio of convex area of an

- 96 -



Table 1: Summary of the two level hierarchical feature
extraction used for the dynamic tracking framework.

Feature Group Subgroup

1. Position
Location

Speed
Acceleration

3. Scale

Area
Major Axis Length
Minor Axis Length

Bounding Box

4. Shape
Eccentricity

Solidity
Extent (Opacity)

5. Structure Euler Number

6. Texture Variance

7. Color
Average Y Luminance Component

Average Cb Color Component
Average Cr Color Component

object to the area of the object). The texture group contains
the variance feature which is extracted from the grayscale
image. In order to extract the color information the image
is converted to YCbCr color space, but various other color
spaces can be used such as Hue, RGB, LUV, Yuv or Lab.
Finally, each object is represented by a 17 dimensional
feature vector (excluding speed and acceleration features
because they are derived from the position). The values in
the feature vector are normalized between 0 and 1 in order
to make comparable measurements among each frame of
the video sequence.

The choice of the feature set should be based on the
requirements of a specific application area.

2.4. Dynamic Spatio-Temporal Feature Selection

In a real-time application, the number of features should
be minimal to increase the speed of the system, but all
relevant information must be kept. This can be done by
creating a hierarchy among the features based on their
confidence or robustness. The noisy feature channels
should be filtered out. The tracking system consists of
feature selection, data assignment, state space estimation,
prediction and error correction.

2.4.1. Feature Selection

The feature selection is done by analyzing the spatial
and temporal property of each feature channel. The
“good” features are selected based on a spatio–temporal
consistency metric. Let xi

k and be the feature state space
vector at frame k for the ith object. Let Qi j

k (n) quality matrix

(eq. 3) be the minimum of pair wise l1 (eq. 1) distance of
the current state space vector nth component between the i
and jth objects.

Qk(n) = min{d1(xi
k(n), x j

k(n)) | (i > j)} (3)

The second term of the consistency metric is the inverse
of the residual gradient magnitude of the previous state
space estimation. Features that are well separated from
each other and do not change much in time are preferred.
The final consistency metric (eq. 4) is defined by a linear µ
parameter homotopy of the first part and the second parts.
(The variable m donates the number of features.)

Ck = (1 − µ)Qk + µ
1

1
m
∑m

i=1 |xi
k−1 − xi

k |
(4)

Ck vector contains the quality measurement for each
feature at a given time. Different feature selection strategies
can be considered. A fix number of best features can be
selected, or features can be selected above a given threshold
level, resulting in a varying number of features for each
frame. Section 3 - Performance Evaluation gives detailed
comparison of the different feature selection strategies.

2.4.2. Data Assignment

The assignment of measurements to consistent tracks
is accomplished using a combinatorial optimization
algorithm called the Hungarian [6] method. Only selected
features selected contribute to the calculation of the
distance matrix. The assignment algorithm is used to match
the current and predicted states together with minimal cost.
The time complexity of the assignment algorithm is low
order polynomial. More complex data association models
can be applied, such as described in [7].

2.4.3. State Space Estimation

Interacting Multiple Model (IMM) was used as state
estimation framework. Recursive steady-state Kalman
filters [8] are used for the state prediction and correction
phases. The prediction filters are also know as alfa,
alfa-beta, alfa-beta-gamma filters. Particle filters may be
used to improve the accuracy of the results [9].

3. Performance Evaluation

The evaluation of the tracking algorithm was performed
on computer simulated videos. The black and white
reference masks do not contain information about tracking
individual objects. Therefore an object map is synthesized,
where a unique color is to each object for track
representation (see Figure 3). For each color value, the
center of mass coordinates are extracted, which gave the
reference tracks for the evaluation. Note that for Scene
1 (Shapes) the object ID mask is multiplied with the
corresponding binary mask before evaluation.
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Figure 3: Object ID map flows for the simulation videos.
Each object is assigned a unique color. From left to right:
Scene 1 (Shapes), Scene 2 (Bipeds), Scene 3 (Cars). The
images have been modified for printing.

The mean square error (MSE) is calculated between the
reference track and measured tracks. The MSE can be
calculated according to the following equation:

MS E =
1
n

n∑
i=1

d1(Re fx,Measx) + d1(Re fy,Measy) (5)

A total of three feature selection strategies were
evaluated. The first is the Best-Feature selection strategy,
where only one feature is selected. The second strategy
is when all the features (All-Feature) are used by the
algorithm. The third is the, K-Dynamic selection, where
a feature is selected above a given threshold level. This
threshold level was set such that the quality of tracking
approximately achieved the All-Feature selection strategy.
Table 2 summarizes the MSE comparison measurements
for the three feature selection strategies.

Table 2: Summary of MSE measurement between the
reference and measured trajectories for the different feature
selection strategies.

Feature Selection Method
Scene Best-Feature K-Dynamic All-Features

Scene 1 5.4E-3 8.8114E-4 6.459E-4
Scene 2 2.9E-3 2.6E-3 2.5E-3
Scene 3 1.94E-4 1.7366E-4 1.698E-4

The K-Dynamic selection used an average of 2.76, 3.01,
3.41 features on average for Scenes 1-3 respectively.

Figure 4 shows the final object detection and tracking
result. The images also include the bounding box and
trajectory of each tracked objects.

Figure 4: Object detection and tracking results on the three
simulation videos. Scene 1 (Shapes) frame: 215, Scene 2
(Bipeds) frame: 250, Scene 3 (Cars) frame: 200

4. Conclusion

The tracking framework uses a dynamic feature and
signature selection method for multiple target tracking.
This algorithm can be used to track objects in a changing
environment after topographic CNN-like segmentation and
hierarchical feature extraction. The algorithm arranges
the parallelly extracted features into a hierarchy, based on
their consistency measurement. The overall complexity is
reduced by using only the relevant features for tracking the
objects in the scene, which reduces the computational time
demand. Performance evaluation on synthesized videos
confirmed that instead of using the 17 dimensional feature
vector dynamically selecting the best 3-4 features can
result in as accurate tracking. Future work will include
the development of more complex selection strategies and
testing the algorithms on real video sequences.
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