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Abstract—More and more renewable energy will be in-cently [2]. Among others, the notion of critical slowing
troduced in power grids. It might make the power systerdown is a breakthrough to understand the relation between
unstable, possibly leading to large-scale blackouts. If wiifurcation and detection of early warning signals. If the
can detect early warning signals of the blackouts and preystem state approaches the bifurcation point, it becomes
dict whether they occur, it would be possible to take nediard to return to the fixed point when it slightly departs
essary measures to prevent the blackouts. Therefore, itfism the fixed point. In Ref. [3], this notion is extended
significantly important to detect such early warning signalto multi-dimensional time series data. In this study, we
in power grids. Since the mechanism of the power outagepply this method to power grids. To the best of our
is too complicated to be clarified by modeling all dynamicknowledge, the application of dynamical network marker
of power grids, a model-free method is needed for practicé power grids has not been investigated up to now. Another
detection of the early warning signals for the blackouts. Imodel-free method is Koopman-mode analysis, which can
this paper, we try to detect the early warning signals usinglarify the stability of the dynamics in multi-dimensional
the idea of dynamical network marker, which can detedime series data [4]. In this paper, we try to detect the
the qualitative change of nonlinear dynamics. In particulagarly warning signals using the idea of dynamical network
we compare the above method with the method based amarker, which can detect the qualitative change of non-
Koopman mode analysis and validate the detection abilinear dynamics [3]. In particular, we compare the above
ties of the dynamical network marker. method with the method based on Koopman mode analy-

sis [4] and validate the detection abilities of the dynamical

1. Introduction network marker.

More and more renewable energy will be introduced i
power grids. The output of renewable energy fluctuates a
lot because of weather condition. Therefore, it might cause
instability of the power system, possibly leading to large- \ve priefly introduce the two model-free methods for de-

scale blackouts. o tecting early warning signals.
If we can detect early warning signals of the blackouts

and predict whether they occur or not, it would be possiz_l_ Dynamical Network Marker
ble to take necessary measures to prevent the blackouts.
Therefore, it is significantly important to detect such early The detailed explanation of the method introduced in this
warning signals in power grids. subsection is given in Ref. [3]. The dynamical network

Since the mechanism of the power outages is too cormarker can detect the early warning signals of abnormal
plicated to be clarified by modeling all dynamics of poweistate from multi-dimensional time series data. This method
grids, a model-free method is required for practical deis a model-free method. From the viewpoint of detecting
tection of the early warning signals for the blackoutsthe early warning signals, the states of systems can be cat-
Although several model-dependent methods for detectiregorized into three states: normal, pre-abnormal, and ab-
early warning signals have been developed so far [1], theormal states. In power grids, normal and abnormal states
model-free methods have not been fully explored. correspond to the ordinary operation and the blackout, re-

In the physics community, the studies of detecting thepectively. In human body, they correspond to healthy and
early warning signals have been actively developed ralisease states, respectively.

Model-free Methods for Detecting the Early Warn-
ing Signals
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In many systems, it is €ficult to distinguish between 3. Numerical Experiments
normal and pre-abnormal states. This method can distin-
guish between these two states by considering the propefyl- Toy Model of Gene Regularoty Network and 3-
of dynamical systems. node Power Grid

In the pre-abnormal state, th?re exists a group of \ye apply these two methods to a 5-node gene regulatory
nodes whose average for Pearson’s correlatioffic®nts nenyork and a 3-node power grid in order to demonstrate
(PCCs) drastically increases in their absolute values [3f¢ apility to detect early warning signals. The gene regu-
We call such a group a dominant group. In this state, thgory network was used as a benchmark model in the val-

avarage PCCs of the nodes between the dominant 9ropision of dynamical network biomarker [3]. The 3-node
and any others drastically decrease in their absolute Va'“‘fd%wer grid can represent the typical case of blackout.

Also, the average for standard deviations (SDs) of nodes in The model equations of the gene regulatory network are
the dominant group dramatically increases. written as follows:

The dominant group corresponds to non-zero eIement)%
. X . . = fa(x f —a;x
of the eigenvector corresponding to the maximum eigen- (0 310+ A13Tn(Xs(1)) + B1aTp(xa(D)) — Arrxa (D),

value of Jacobian matrix at the fixed point. %) = @0+ 8 fa(xa(t)) + 823 fp(xs(t)) — a22%(t),
If we know the mathematical model of the system, weXa(t) = ago+ azafp(Xa(t)) — azaxa(t),
derive the dominant group by analyzing the Jacobian mag,t) = a,+ aus fp(Xs(t)) — auaxa(t),

trix of the model at the fixed point. Otherwise, we have . _
to estimate the dominant group in some ways. In order 1380 = 860+ s f(a (D)) + 352 T(%a(1)) + Beatn(xa(0))

detect the early warning signals, we calculate the index as —a55%s(1),
follows:
Index= >4 X PCG (1) uhere
B PCG

| | 00 = e o) =
where SI is the average for SDs of the dominant group, 1+x 1+x
PCG, is the average for PCCs between the dominant group &0 = 90P — 124Q a3 = 30P, a13 = 240- 120P,
and any others in their absolute values, and PisGhe av- 14 = 4480/3, a0 = 120P — 24Q ay; = 240- 120P,
erage PCCs of the dominant group in their absolute values. aps = 60, a3 = 240— 120P, agp = —106Q

2.2. Koopman-mode Analysis ag3 = 60, 834 = 448(/3, 40 = ~600Q,

. . . L ass = 100, a45 = 135Q agp = 320/3,
The detailed explanation of the method introduced in this
subsection is given in Ref. [4,5]. This method estimates 1~ 160 as = 40,854 = 448(/3, as5 = 300
the stability of the system by decomposing the nonlineafjnhenp is larger than 0, the system is stable @d 0
dynami(_:s_into_some modes. The numbe_r of _decompos%rresponds to the bifurcation point. In the numerical ex-
modes is infinity, so we often use approximation methodseriment, we add the additional steady noise with stan-

for practical .application. o dard deviation M5 in every time step. We employ the
Here we introduce an approximation method. Let Ugyler-Maruyama method with time ste05 and iterate
consider the set of data given by 200,000 steps. We set node 1 and 2 as the dominant group.
Yo, Y,.... Y71}, (2)  This is derived from the Jacobian at the fixed point. In the

whereY, € R™ is them dimensional observed data at timesimulation of the power grid, we use Kuramoto-like phase
tfort = 0,1,...,T — 1. We decompose the dynamics inmodel [6-9]. The equation is as follows:

the time series by applying the Arnoldi-like algorithm as . ) N )
follows: . Mig + Dig = P = ) Bysin@i—¢),  (5)
- =
Y= ) A, 3) . .
= wherei, N, ¢, M;, Dj, P;, andB;; represent the index of
T-1 nodes, the number of nodes, the phase of voltages, damping
Yy = Z/lJT_lvi 4T, (4) codficient, inertia_ moment, fEective power, and coupling
= strength, respectively. We regard node 1 as generator and

. nodes 2 and 3 as loads. We set the parameters as follows:
wherer L spanYo,Y1,..., Y12}, If 4 > 1, it means that N=3M=1D =1,and

the system is unstable in short-term dynamics. The notion
of stability in this context is dferent from conventional B — { 1, i # ], ©6)
ones. The former is the short-term dynamics and the lat- YT -2, i=].

ter is the long-term asymptotic dynamics. We momentaril
calculate the eigenvalues and regard the timing when t
eigenvalues become larger than one as the precursor of un- P, i=1,

stability. Pi = { -P/2, i=23. )

e setP; as follows:
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WhenP < 2, the system has a stable fixed point &#d 2 eter. Even if the parametét approaches the bifurcation
corresponds to the bifurcation point. In the numerical expoint 0, the absolute eigenvalues do not go beyond 1, so we
periment, we add the additional steady noise to the parameuld not detect the early warning signals. This is because
eterP in every time step. The standard deviation is set dhe Koopman mode analysis, which captures the exponen-
0.05. We employ the Euler-Maruyama method with timeial growth of the system, is not suitable for this case where
step 0005 and iterate D00 000 steps. We set node 1, 2,the system state remains near the fixed point when the pa-
and 3 as the dominant group. This is derived from the Jaameter approaches the bifurcation point.

cobian at the fixed point.

If we can detect the early warning signals wheis nea
the bifurcation point, the method isfective for the dete :
tion. Figures 1 (a) and 2 (a) show the relation betwee )
bifurcation parameter and the indices of the dynamica
work marker. When the bifurcation parameter approe
0, the composite index drastically increases. Therefor
method can detect the early warning signals of the bifi
tion.
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Figure 2: Numerical results of the 3-node power grid. (a)
The relation between the bifurcation parameter and the in-
dices of the dynamical network marker. When the bifur-
cation parameter approaches 2, the composite index dras-
tically increases. (b) The relation between the bifurcation
parameter and Koopman eigenvalues in their absolute val-
ues. Unlike (a), we calculate the Koopman eigenvalues af-
ter exceeding the bifurcation point. We take a sample of
1000 time points.

PCC and index

Figure 1: Numerical results of the 5-node gene regulatory 5  ragl Data of a Power Grid
network. (a) The relation between the bifurcation parame-
ter and the indices of the dynamical network marker. The We use real data of the System Disturbance in the Eu-
horizontal axis represents the bifurcation parametérhe ropean Grid [10] and compare the detection abilities of the
left vertical axis represents the PG®CG, and the com- early warning signals. The data was given from Dr. Yoshi-
posite index. The right vertical axis represents the SD. Theko Susuki of Kyoto University. The data are power ex-
dash-dotted line, the dashed line, and the thick solid linehange deviations flows in the UCTE grid. Figure 3 shows
represent the PGC PCG,, and the composite index, re- the time evolution of the indices of the dynamical network
spectively. When the bifurcation parameter approaches farker. The blackout occurs ait= 40. We set node 3,
the composite index drastically increases. (b) The relatiofy and 6 as the dominant group in this figure. We also tried
between the bifurcation parameter and Koopman eigenvalvery pattern as the dominant group, but all the patterns did
ues in their absolute values. The horizontal axis representst show a drastic increase before the blackout. Therefore,
the bifurcation parametd?. The dots represent the Koop-the method cannot detect the early warning signals of the
man eigenvalues in their absolute values. Unlike (a), wielackout.
calculate the Koopman eigenvalues after exceeding the bi-Figure 4 shows the distribution of Koopman eigenvalues
furcation point. We take a sample of 100 time points. in their absolute values for each parameter. The eigenval-
ues go beyond 1 even long before the blackout. In order to
Figures 1 (b) and 2 (b) show the distribution of the Koopvalidate the fact that this result indicates the early warning
man eigenvalues in their absolute values for each pararmsignals, we have to compare the ordinary operation data.
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Figure 3: The time evolution of the indices of dynamicaFigure 4: The time evolution of the Koopman eigenvalues
network marker. The horizontal axis represents the time in their absolute values. The horizontal axis represents the
The left vertical axis represents the PC®CG, and the timet. The dots represent the Koopman eigenvalues in their
composite index. The right vertical axis represents the S@bsolute values. At time we take a sample from time 1 to
The dash-dotted line, the dashed line, and the thick solid
line represent the PGCPCG,and the composite index,
respectively. At timd, we take a sample from tinte- 9 to
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In this paper, we have numerically demonstrated the del3] - Chen, R. Liu, Z.-P. Liu, and K. Ahar&cientific
tection of early warning signals using the idea of dynami- Reportsvol. 2, no. 342, 2012.
cal network marker and Koopman mode analysis using t0y{4] . Susuki and |. Me#i IEEE Transactions on Power
models and real data. In the toy models, only the dynam- — gystemsvol. 54, no. 2, pp. 899-907, 2013.
ical network marker can detect the early warning signals.
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tect the early warning signals, although further studies are and D. S. Henningsodournal of Fluid Mechanics
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