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Abstract—More and more renewable energy will be in-
troduced in power grids. It might make the power system
unstable, possibly leading to large-scale blackouts. If we
can detect early warning signals of the blackouts and pre-
dict whether they occur, it would be possible to take nec-
essary measures to prevent the blackouts. Therefore, it is
significantly important to detect such early warning signals
in power grids. Since the mechanism of the power outages
is too complicated to be clarified by modeling all dynamics
of power grids, a model-free method is needed for practical
detection of the early warning signals for the blackouts. In
this paper, we try to detect the early warning signals using
the idea of dynamical network marker, which can detect
the qualitative change of nonlinear dynamics. In particular,
we compare the above method with the method based on
Koopman mode analysis and validate the detection abili-
ties of the dynamical network marker.

1. Introduction

More and more renewable energy will be introduced in
power grids. The output of renewable energy fluctuates a
lot because of weather condition. Therefore, it might cause
instability of the power system, possibly leading to large-
scale blackouts.

If we can detect early warning signals of the blackouts
and predict whether they occur or not, it would be possi-
ble to take necessary measures to prevent the blackouts.
Therefore, it is significantly important to detect such early
warning signals in power grids.

Since the mechanism of the power outages is too com-
plicated to be clarified by modeling all dynamics of power
grids, a model-free method is required for practical de-
tection of the early warning signals for the blackouts.
Although several model-dependent methods for detecting
early warning signals have been developed so far [1], the
model-free methods have not been fully explored.

In the physics community, the studies of detecting the
early warning signals have been actively developed re-

cently [2]. Among others, the notion of critical slowing
down is a breakthrough to understand the relation between
bifurcation and detection of early warning signals. If the
system state approaches the bifurcation point, it becomes
hard to return to the fixed point when it slightly departs
from the fixed point. In Ref. [3], this notion is extended
to multi-dimensional time series data. In this study, we
apply this method to power grids. To the best of our
knowledge, the application of dynamical network marker
to power grids has not been investigated up to now. Another
model-free method is Koopman-mode analysis, which can
clarify the stability of the dynamics in multi-dimensional
time series data [4]. In this paper, we try to detect the
early warning signals using the idea of dynamical network
marker, which can detect the qualitative change of non-
linear dynamics [3]. In particular, we compare the above
method with the method based on Koopman mode analy-
sis [4] and validate the detection abilities of the dynamical
network marker.

2. Model-free Methods for Detecting the Early Warn-
ing Signals

We briefly introduce the two model-free methods for de-
tecting early warning signals.

2.1. Dynamical Network Marker

The detailed explanation of the method introduced in this
subsection is given in Ref. [3]. The dynamical network
marker can detect the early warning signals of abnormal
state from multi-dimensional time series data. This method
is a model-free method. From the viewpoint of detecting
the early warning signals, the states of systems can be cat-
egorized into three states: normal, pre-abnormal, and ab-
normal states. In power grids, normal and abnormal states
correspond to the ordinary operation and the blackout, re-
spectively. In human body, they correspond to healthy and
disease states, respectively.
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In many systems, it is difficult to distinguish between
normal and pre-abnormal states. This method can distin-
guish between these two states by considering the property
of dynamical systems.

In the pre-abnormal state, there exists a group of
nodes whose average for Pearson’s correlation coefficients
(PCCs) drastically increases in their absolute values [3].
We call such a group a dominant group. In this state, the
avarage PCCs of the nodes between the dominant group
and any others drastically decrease in their absolute values.
Also, the average for standard deviations (SDs) of nodes in
the dominant group dramatically increases.

The dominant group corresponds to non-zero elements
of the eigenvector corresponding to the maximum eigen-
value of Jacobian matrix at the fixed point.

If we know the mathematical model of the system, we
derive the dominant group by analyzing the Jacobian ma-
trix of the model at the fixed point. Otherwise, we have
to estimate the dominant group in some ways. In order to
detect the early warning signals, we calculate the index as
follows:

Index≡ SDd × PCCd

PCCo
, (1)

where SDd is the average for SDs of the dominant group,
PCCo is the average for PCCs between the dominant group
and any others in their absolute values, and PCCd is the av-
erage PCCs of the dominant group in their absolute values.

2.2. Koopman-mode Analysis

The detailed explanation of the method introduced in this
subsection is given in Ref. [4, 5]. This method estimates
the stability of the system by decomposing the nonlinear
dynamics into some modes. The number of decomposed
modes is infinity, so we often use approximation methods
for practical application.

Here we introduce an approximation method. Let us
consider the set of data given by

{Y0,Y1, . . . ,YT−1}, (2)

whereYt ∈ Rm is them dimensional observed data at time
t for t = 0,1, . . . ,T − 1. We decompose the dynamics in
the time series by applying the Arnoldi-like algorithm as
follows:

Yt =

T−1∑
j=1

λt
jV j , (3)

YT−1 =

T−1∑
j=1

λT−1
j V j + r , (4)

wherer ⊥ span{Y0,Y1, . . . ,YT−2}. If λ > 1, it means that
the system is unstable in short-term dynamics. The notion
of stability in this context is different from conventional
ones. The former is the short-term dynamics and the lat-
ter is the long-term asymptotic dynamics. We momentarily
calculate the eigenvalues and regard the timing when the
eigenvalues become larger than one as the precursor of un-
stability.

3. Numerical Experiments

3.1. Toy Model of Gene Regularoty Network and 3-
node Power Grid

We apply these two methods to a 5-node gene regulatory
network and a 3-node power grid in order to demonstrate
the ability to detect early warning signals. The gene regu-
latory network was used as a benchmark model in the val-
idation of dynamical network biomarker [3]. The 3-node
power grid can represent the typical case of blackout.

The model equations of the gene regulatory network are
written as follows:
ẋ1(t) = a10 + a13 fn(x3(t)) + a14 fp(x4(t)) − a11x1(t),

ẋ2(t) = a20 + a21 fn(x1(t)) + a23 fp(x3(t)) − a22x2(t),

ẋ3(t) = a30 + a34 fp(x4(t)) − a33x3(t),

ẋ4(t) = a40 + a45 fp(x5(t)) − a44x4(t),

ẋ5(t) = a50 + a51 fn(x1(t)) + a52 fn(x2(t)) + a54 fn(x4(t))

−a55x5(t),

where

fp(x) =
x

1+ x
, fn(x) =

1
1+ x

,

a10 = 90P− 1240,a11 = 30P,a13 = 240− 120P,

a14 = 4480/3,a20 = 120P− 240,a21 = 240− 120P,

a22 = 60, a23 = 240− 120P,a30 = −1060,

a33 = 60,a34 = 4480/3,a40 = −600,

a44 = 100,a45 = 1350,a50 = 320/3,

a51 = 160,a52 = 40, a54 = 4480/3,a55 = 300.

When P is larger than 0, the system is stable andP = 0
corresponds to the bifurcation point. In the numerical ex-
periment, we add the additional steady noise with stan-
dard deviation 0.05 in every time step. We employ the
Euler-Maruyama method with time step 0.005 and iterate
200,000 steps. We set node 1 and 2 as the dominant group.
This is derived from the Jacobian at the fixed point. In the
simulation of the power grid, we use Kuramoto-like phase
model [6–9]. The equation is as follows:

Mi ϕ̈i + Di ϕ̇i = Pi −
N∑

j=1

Bi j sin(ϕi − ϕ j), (5)

where i, N, ϕ, Mi , Di , Pi , andBi j represent the index of
nodes, the number of nodes, the phase of voltages, damping
coefficient, inertia moment, effective power, and coupling
strength, respectively. We regard node 1 as generator and
nodes 2 and 3 as loads. We set the parameters as follows:
N = 3, Mi = 1, Di = 1, and

Bi j =

{
1, i , j,
−2, i = j.

(6)

We setPi as follows:

Pi =

{
P, i = 1,
−P/2, i = 2, 3.

(7)
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WhenP < 2, the system has a stable fixed point andP = 2
corresponds to the bifurcation point. In the numerical ex-
periment, we add the additional steady noise to the param-
eterP in every time step. The standard deviation is set at
0.05. We employ the Euler-Maruyama method with time
step 0.005 and iterate 2,000,000 steps. We set node 1, 2,
and 3 as the dominant group. This is derived from the Ja-
cobian at the fixed point.

If we can detect the early warning signals whenP is near
the bifurcation point, the method is effective for the detec-
tion. Figures 1 (a) and 2 (a) show the relation between the
bifurcation parameter and the indices of the dynamical net-
work marker. When the bifurcation parameter approaches
0, the composite index drastically increases. Therefore, the
method can detect the early warning signals of the bifurca-
tion.
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Figure 1: Numerical results of the 5-node gene regulatory
network. (a) The relation between the bifurcation parame-
ter and the indices of the dynamical network marker. The
horizontal axis represents the bifurcation parameterP. The
left vertical axis represents the PCCd, PCCo and the com-
posite index. The right vertical axis represents the SD. The
dash-dotted line, the dashed line, and the thick solid line
represent the PCCd, PCCo, and the composite index, re-
spectively. When the bifurcation parameter approaches 0,
the composite index drastically increases. (b) The relation
between the bifurcation parameter and Koopman eigenval-
ues in their absolute values. The horizontal axis represents
the bifurcation parameterP. The dots represent the Koop-
man eigenvalues in their absolute values. Unlike (a), we
calculate the Koopman eigenvalues after exceeding the bi-
furcation point. We take a sample of 100 time points.

Figures 1 (b) and 2 (b) show the distribution of the Koop-
man eigenvalues in their absolute values for each param-

eter. Even if the parameterP approaches the bifurcation
point 0, the absolute eigenvalues do not go beyond 1, so we
could not detect the early warning signals. This is because
the Koopman mode analysis, which captures the exponen-
tial growth of the system, is not suitable for this case where
the system state remains near the fixed point when the pa-
rameter approaches the bifurcation point.
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Figure 2: Numerical results of the 3-node power grid. (a)
The relation between the bifurcation parameter and the in-
dices of the dynamical network marker. When the bifur-
cation parameter approaches 2, the composite index dras-
tically increases. (b) The relation between the bifurcation
parameter and Koopman eigenvalues in their absolute val-
ues. Unlike (a), we calculate the Koopman eigenvalues af-
ter exceeding the bifurcation point. We take a sample of
1000 time points.

3.2. Real Data of a Power Grid

We use real data of the System Disturbance in the Eu-
ropean Grid [10] and compare the detection abilities of the
early warning signals. The data was given from Dr. Yoshi-
hiko Susuki of Kyoto University. The data are power ex-
change deviations flows in the UCTE grid. Figure 3 shows
the time evolution of the indices of the dynamical network
marker. The blackout occurs att = 40. We set node 3,
4, and 6 as the dominant group in this figure. We also tried
every pattern as the dominant group, but all the patterns did
not show a drastic increase before the blackout. Therefore,
the method cannot detect the early warning signals of the
blackout.

Figure 4 shows the distribution of Koopman eigenvalues
in their absolute values for each parameter. The eigenval-
ues go beyond 1 even long before the blackout. In order to
validate the fact that this result indicates the early warning
signals, we have to compare the ordinary operation data.
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Figure 3: The time evolution of the indices of dynamical
network marker. The horizontal axis represents the timet.
The left vertical axis represents the PCCd, PCCo and the
composite index. The right vertical axis represents the SD.
The dash-dotted line, the dashed line, and the thick solid
line represent the PCCd, PCCo,and the composite index,
respectively. At timet, we take a sample from timet − 9 to
t.

4. Conclusion

In this paper, we have numerically demonstrated the de-
tection of early warning signals using the idea of dynami-
cal network marker and Koopman mode analysis using toy
models and real data. In the toy models, only the dynam-
ical network marker can detect the early warning signals.
In the real data, only the Koopman mode can possibly de-
tect the early warning signals, although further studies are
necessary for evaluating the effectiveness of the method.

A possible reason why the dynamical network marker
cannot detect the early warning signals in the real power
grid example is that the mechanism of blackout is differ-
ent from bifurcation, or the ordinary qualitative change in
nonlinear dynamics.
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