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Abstract—Gabor Transform(GT) is often used to time-
frequency analysis for non-stationary signal. The time-
frequency analysis including GT can’t simultaneously im-
prove time resolution and frequency resolution. For this
problem, various studies of multiple resolution analysis
have been done. In these studies, the calculation complex-
ity got very high because several resolution analysis must
be performed in the same signal. Solving this issue, we
have proposed the resolution conversion method which can
synthesize the spectrum of high frequency resolution using
some spectra of low frequency resolution. However, the
method can just convert the spectrum to higher frequency
resolution. In this paper, we propose a conversion method
to lower frequency resolution. The proposed method al-
lows you to get arbitrary resolution spectrum in any time-
frequency position by synthesizing the desired one from the
spectra calculated preliminarily in one resolution.

1. Introduction

Short Time Fourier Transform(STFT) is often used to
time-frequency analysis for non-stationary signal. In this
method, it performs a Fourier Transform(FT) to what was
cut out a part of signal as the frame. In general, in or-
der to ensure continuity at the endpoints of the frame,
eliminate the influence of the discontinuity by window-
ing. Result of the frequency analysis is different depend-
ing on whether choose what kind of window function. Ga-
bor Transform(GT) to be used Gabor function which is fa-
mous for that the product of the time-frequency resolution
is minimum[1] is proposed. GT have been used in a vari-
ety of fields[2], but the analysis resolution is bound by the
uncertainty principle, time resolution and frequency resolu-
tion has a relationship of trade-off [3]. In this effect, there
is a problem which the time-frequency analysis can’t im-
prove time resolution and frequency resolution at the same
time.

For this problem, a study of multiple resolution analy-
sis has been done[4]. In this method, it perform the GT
of some different frame length for the input signal, and to
select the best resolution at a certain time and frequency.
However, in this study, the calculation complexity got very
high because several resolution analysis must be performed
in the same signal. Solving this issue, we have proposed
the resolution conversion method which can synthesize the

spectrum of high frequency resolution using some spectra
of low frequency resolution[5]. However, it can synthe-
size in only one direction to a spectrum of high frequency
resolution from spectra of low frequency resolution in this
method. In this paper, we propose the method for synthe-
sizing a high time resolution spectrum from low time res-
olution spectrum. The proposed method allows you to get
arbitrary resolution spectrum in any time-frequency posi-
tion by synthesizing the desired one from the spectra calcu-
lated preliminarily in one resolution. First, we show it can
be synthesized a high time resolution spectrum from a low
time resolution spectrum using mathematical characteris-
tics of Gaussian that convolution of two Gaussians become
a Gaussian with different standard deviation. Next, we dis-
cuss of the calculation accuracy of the proposed method,
and show a design method of synthesis based on the cal-
culation accuracy. Finally, we experiment and show a high
time resolution spectrum can be synthesized from low time
resolution spectra, and compare the calclation complexity,
we showed the practical value of the proposed method.

2. Gabor Transform

GT Xσ(τ, ω) of input signal x(t) is defined by

Xσ(τ, ω) =

∫
gσ(t − τ) · x(t) · e− jω(t−τ)dt (1)

where Gauss window gσ(t) is defined by

gσ(t) =
1
√

2πσ
e−

t2

2σ2 . (2)

Shape of the window, that is to say the standard deviationσ
of the Gauss window determines a resolution. Since Gaus-
sian is a function of infinite length, an error occurs by trun-
cating a finite length for use Gaussian as a window func-
tion. Therefore, we design a sigma that the amplitude of
Gaussian which is a monotonically decreasing function is
below the acceptable error ε at the end point of the frame.

σ =
1

2
√
−2 ln ε

· L
fs

(3)

where L is frame length, fs is sampling frequency.
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3. Synthesis Method

In general, in order to obtain a spectrum of different res-
olutions, it is necessary to perform GT again. We propose
a method that directly calculate a spectrum of σ/α from a
spectrum which is calculated by the Gauss window of σ in
this paper. Where α is synthetic magnification. Thus, we
use the property which frequency response of a Gaussian is
a Gaussian. FT of Eq.(2) is

Gσ(ω) =

∫
gσ(t) · e− jωtdt

= e
− ω2

2( 1
σ )2 . (4)

In order to operate σ of GT using this property, we focused
on the mathematical characteristics of Gaussian that convo-
lution of two Gaussians become a Gaussian with different
standard deviation.

G 1
α
σ(ω) =

∫
Gσ(ω − γ) ·Gσd (γ)dγ (5)

where σd is

σd =
σ

√
α2 − 1

(α > 1). (6)

Substituting Eq.(5) to the GT , Eq.(7) is obtained undergo-
ing a process of follow.

X 1
α
σ(τ, ω0)= e jω0τ

∫
g 1
α
σ(t − τ) · x(t) · e− jω0tdt

= e jω0τ

∫
G 1
α
σ(ω) · X(ω + ω0) · e jωτdω

= e jω0τ

∫ ∫
Gσ(ω − γ) · X(ω + ω0) · e j(ω−γ)dω

·Gσd (γ) · e jγτdγ

=

∫
e jγτ · Xσ(τ, ω0 + γ) ·Gσd (γ)dγ (7)

This expression means that as shown in Figure 1, a spec-
trum of different σ can be calculated by convoluting Gaus-
sian Gσd (γ) with multiplying a spectrum Xσ(τ, ω0 + γ) by a
phase term e jγτ in the frequency domain.

Here, the frequency domain is discretized at intervals
Ω =

ωs
L by DFT. Where ωs is sampling angular frequency.

In order to perform product-sum operation to the convolu-
tion of Eq.(7) , as γ = mΩ, it is assumed that convolving to
the point of finite term Mω, the discrete formula is

X̃ 1
α
σ(τ, ω0)

'
Mω∑

m=−Mω

{Xσ(τ, ω0 + mΩ) ·Gσd (mΩ) · e− j(mΩ)τ} ·Ω. (8)

4. Evaluate of Synthetic Accuracy

A spectrum can be synthesized without the error in the
continuum region, but the error occurs by discretizing as

Figure 1: Spectrum synthesis method

Eq.(8). The synthesizing of a spectrum is performed by
convolving spectrum which is calculated with respect to
each interval Ω in frequency domain to the point of finite
term Mω. Thus, we discuss how Mω and Ω affect to the
error.

First, we discuss the error of synthetic Guass window
in the time domain. Eq.(8) is rewritten in the form of the
GT using the frequency response of the synthetic Gauss
window as Eq.(9).

X 1
α
σ(τ, ω0)=

Mω∑

m=−Mω

{e j(ω0+mΩ)τ
∫

X(ω) ·Gσ(ω − ω0 − mΩ)

·e jωτdω ·Gσd (mΩ) · e− j(mΩ)τ} ·Ω

= e jω0τ

∫
G̃ 1
α
σ(ω) · X(ω + ω0) · e jωτdω (9)

In other word, the error of synthetic spectrum is controlled
by the error of frequency response of synthetic Gauss win-
dow G̃ 1

α
σ(ω). Since convolution in the frequency domain is

the product of the time domain, G̃ 1
α
σ(ω) becomes the prod-

uct as Eq.(10) in the time domain.

g̃ 1
α
σ(t) = gσ(t) · gσd (t − 2πk

Ω
) (10)

Gaussian which is a window function of the GT is a mono-
tonically decreasing function，but as shown in Figure2, a
discrete Gaussian becomes periodic. In this effect，we can
be seen that the synthetic Gauss window g̃ 1

α
σd

(t) has a peri-
odic component. Where, k is a parameter which represent
what number periods of periodic components of the dis-
crete Gaussian. The peak level of the first periodic compo-
nent controls the accuracy of the synthesis Gauss window.
Hence, we calculate the level of the first periodic compo-
nent which is occurred in k = 1. Using Eq.(10), synthetic
Gauss window can be written as

g̃ 1
α
(t) = e

− 1
2

( t
σ )2
+

(
t− 2π
Ω

σd

)2

. (11)

Furthermore, since the derivative of periodic component at
peak time tp is 0, the result of differentiating g̃ 1

α
σ(tp) with
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Figure 2: Characteristics of the synthetic Gauss window in
the time domain

respect to tp is 0, and solving for tp,

tp =
2π
Ω

(
1 − 1
α2

)
(12)

By substituting this tp to Eq.(11) of synthetic Gauss win-
dow, the peak of the periodic component is obtained.

g̃ασ
(
tp

)
= e−

1
2 ( 1
σ )2( 2π

Ω
)2(1− 1

α2

)
(13)

It can be seen that the peak of the periodic component does
not depend on the frequency of analysis from this formula.
Also, σ and α are determined by the request of the user.
Thus, it is necessary to design the ω as the peak of periodic
component drops below the acceptable error.

Next, we discuss the relationship between the interval Ω
of frequency domain and the error. Thus, we define the
required accuracy of the synthesis depending on the analy-
sis object, and determine the longest intervals Ω satisfying
the required precision. If the level of periodic component
which is required is ε, from g̃ 1

α
σ(tp) ≤ ε, Ω is

Ω ≤

∣∣∣∣∣∣∣

√
2π

√
− ln εσ

·
√

1 − 1
α2

∣∣∣∣∣∣∣
. (14)

However, Ω take only regular intervals by DFT. If substi-
tuting Ω = ωs

L and Eq.(3), Eq.(14) is

α ≥
√

4
3
. (15)

Finally, we discuss the relationship between the num-
ber of synthesis term Mω and the error. To determine the
minimum Mω satisfying the condition by defining the ac-
curacy of the request in the same manner as Ω. Thus, it
is considered to be sufficient to consider the range which
amplitude of discrete Gaussian is damped to required ac-
curacy. Solving for ω under the conditions that frequency
response of the discrete Gaussian Gσd (ω) is less than the ε,

using ω = MωΩ,

MωΩ ≥
√
−2 ln ε

√
α2 − 1

σ
. (16)

If substituting Ω = ωs
L and Eq.(3) to this fomula,

Mω ≥
−2 ln ε

√
α2 − 1
π

. (17)

As above, the condition satisfying required accuracy of the
intervals Ω and the number of synthesis term Mω becomes
clear. By satisfying this condition, a spectrum of the high
time resolution can be synthesized within a tolerance from
spectra of the low time resolution .

5. Experiment

It was confirmed whether capable of synthesizing a spec-
trum of the high time resolution from spectra of the low
time resolution in practice. We conducted experiments to
three sine waves. We are shown the parameters of exper-
iment in Table1. Figure 3 is an original spectrogram, and
figure 4 is a spectrogram of after synthesis. Figures are
represent, the horizontal axis is time, the vertical axis is fre-
quency, and the brightness is amplitude. We could confirm
that can be synthesized a spectrum of high time resolution
from spectra of low time resolution from experimental re-
sults.

Table 1: The parameters of experiment

Input S ignal : sine wave 440,660,880[Hz]
Frame Length : L 16384[sample]

S ampling Frequency : fs 44.1[kHz]
Acceptable Error : ε 3.05 · 10−5

S ynthetic Magni f ication : α 2 (Namely 1
2σ)

Figure 3: Original spectrogram

The proposed method can calculate an approximation
of the Continuous Wavelet Transform (CWT) by chang-
ing the resolution for each frequency. Hence, we com-
pare the calculation complexity of the proposed method
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Figure 4: Synthetic spectrogram

Op with the CWT Ow, and we consider whether there is
a practical value. Comparing in number of multiplications
that govern the calculation complexity. Specifically, We
consider that scale up the scaling factor s from 1 to S .
s can be written using integer a and interval ∆s = 0.5.
s = a · ∆s + 1(a : 0 ∼ (S − 1)/∆s). Since there is a con-
dition α ≥

√
4/3 in the proposed method, the resolution

which is obtained by FFT at the beginning is matched with
the resolution of frequency fb of CWT. fb = f0/(S ·

√
4/3)

. We define S ′ = S ·
√

4/3 . S ′ is integer. A formula of
calculation complexity Op of the proposed method is

Op = 4(L log2 L) + L +
(S−1)/∆s∑

a=0

4(2Mω + 1) (18)

= 4(L log2 L)+L+
(S−1)/∆s∑

a=0

4(2
−2lnε

√
α2−1
π

+1)

where α = S ′/(S − (a∆s)). First term of Eq.(18) is cal-
culation complexity of FFT. First term is quadrupled since
calculating complex number. Second term is windowing.
Third term is synthesis. Synthesis of single can calculate
in the complex arithmetic of (2Mω + 1). We compared us-
ing the calculation complexity of CWT Ow which is already
calculated [6].

Ow =

(S−1)/∆s∑

a=0

2(2
√
−2 ln ε fsσw(a∆s + 1) + 1) (19)

where σw = L/(2
√
−2 ln ε · fs ·S ′). We show reduction rate

r = Op/Ow in the figure 5. Where, L = 16384[sample],
fs = 44.1[kHz], ε = 3.05 · 10−5, S = 32, 64, 128, 256

We can reduce the calculation complexity to less than
one-tenth compared with CWT when S = 512. Complex-
ity reduction method of multiple resolution CWT[6] is ex-
pected to further reduce the calculation complexity using
the proposed method.

6. Conclusion

In this paper, we designed to indicate that it can be
synthesized a spectrum of the high time resolution from

Figure 5: Rate of Complexity reduction

spectra of low time resolution. We focused on the mathe-
matical characteristics of Gaussian that convolution of two
Gaussians become a Gaussian with different standard devi-
ation,and proposed the method for obtaining a spectrum of
high time resolution by convolving the Gaussian in the fre-
quency domain to the spectrum obtained by the GT. Also,
we discussed the error which occurs in synthesizing the
spectrum, and showed that by determining the accuracy re-
quired by the user, synthesis within a tolerance is possible.
Furthermore, we experimented and showed it is possible
to synthesize a spectrum of the high time resolution from
spectra of low time resolution, and compare the calclation
complexity, we showed the practical value of the proposed
method.
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