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Abstract—A general theory for designing optimal,
energy-efficient injection-locking oscillators is presented.
Phase model analysis is combined with variational analysis
to derive an injection signal with which frequency-locking
of an oscillator is achieved with minimum power injection
signal. Optimal signal waveforms are calculated from the
phase response curve (the impulse sensitivity function) and
a solution to a balancing condition. The theory is tested in
various numerical experiments in which oscillations close
to and further away from a Hopf bifurcation exhibited
nearly sinusoidal and non-sinusoidal optimal waveforms,
respectively. Applications of the theory are developed for
practical high frequency oscillators, which are quite useful
for designing new energy-efficient hardwares in communi-
cation devices.

1. Introduction

Entrainment of oscillators to an external signal in nonlin-
ear dissipative systems is a fundamental concept of impor-
tance in a large variety of applications [1]; two prominent
examples in nonlinear sciences include the time-scale ad-
justment of circadian system to light [2] and the cardiac
system to a pacemaker [3]. In electrical engineering, this
concept of entrainment of oscillators has been known as
injection-locking. Interestingly, this classical concept of
injection-locking has gained more and more attention these
several years, since this technique requires less power,
compared with the conventional power-consuming PLL
technique. For instance, in 2006 [4] presented 70GHz
CMOS injection-locked divider at 2006 IEEE ISSCC.
Also, in 2008, 4.8GHz CMOS pulse-injection locking fre-
quency multiplier is reported in [5]. Finally in 2010 re-
searchers in Sony presented their base-band communi-
cation device using injection-locking oscillators at 2010
ISSCC. Namely, these techniques have their common ad-
vantages in their circuit simplicity and power-efficiency,
which is essential in high frequency operation for ICT.
However, theoretical insight of these techniques, and also
their optimization, has never been obtained so far.

The injection-locking (entrainment) process has been de-
scribed theoretically by phase/amplitude equations and cir-
cle maps for weakly and strongly perturbed nonlinear sys-
tems, respectively [1]. The general result of the theoret-

ical analysis is that nonlinear oscillators can adjust their
frequencies to that of the external source (injection signal)
above a critical forcing amplitude. In the forcing ampli-
tude vs. forcing frequency diagram there are long vertical
entrainment regions called Arnold tongues. A widely ac-
cepted tool for studying entrainment is the phase response
curve [2]. Specifically, the phase response function (in-
finitesimal phase response curve) indicates the phase shift
of an oscillator due to an infinitesimal perturbation of a
system variable [8]. A classical problem in nonlinear dy-
namics uses phase response function and forcing wave-
form with which all important features of the entrainment
process (e.g., locking range, defined as the width of the
Arnold tongue at a given forcing amplitude) can be ob-
tained for weakly perturbed systems [1]. It should be noted
that the above concepts of ‘phase equation’ and ‘phase re-
sponse function’ have been known as ‘the Adler’s equation
[6]’ and ‘impulse sensitivity function [7]’ respectively, and
these are important foundations of injection-locking.

Many applications require optimization of the entrain-
ment process. This is often achieved by adjusting the forc-
ing waveform to achieve a target entrainment feature. A
variety of control targets were explored: optimal input was
determined for establishing fast entrainments [9], circadian
phase resetting [10, 11], starting/stopping of the oscilla-
tions [11, 12], and maximal resonance (energy transfer) be-
tween the system and forcing signal [13]. Control of deter-
ministic [14] and stochastic [16, 15] neuronal spiking activ-
ity was achieved with phase modeling approach combined
with variational methods to optimize spiking time [14] and
variance of firing rates [16].

In this study, we give a theoretical foundation for the
inverse of the classical entrainment problem: what is the
minimal power injection waveform that produces power-
efficient entrainment of a limit-cycle oscillator in weak in-
jection conditions? Although the quality of entrainment
could involve features such as stability and basin of at-
traction, here we consider efficient entrainment as the oc-
currence of maximum width (or minimum slopes) of the
Arnold tongue. This ‘locking range’ quality marker has
been commonly used for injection-locking oscillators as
well as phase-locked loop circuits [17]. We propose a ver-
satile, efficient approach to obtain exact functional form
of the optimal waveform provided that the response func-
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tion related to the forcing action had been established. The
theoretically obtained optimal injection waveforms, which
exhibit some unexpected symmetry relationships with the
phase response function, are tested in a simple numerical
model that include higher harmonics in the response func-
tion typically seen in strongly nonlinear oscillators.

2. Mathematical modeling of entrainment

The entrainment process of a limit-cycle oscillator in
weak forcing limit can be modeled by [18]

dψ
dt
= ω + Z(ψ) f (Ωt), (1)

where ψ is the phase of the oscillator, Z is the phase re-
sponse function, and ω and Ω are the natural frequency of
the oscillator and the forcing frequency, respectively. In
weak forcing limit, Eq. (1) is further simplified by averag-
ing [19], as

dϕ
dt
= ∆ω + Γ(ϕ), (2)

where ϕ and ∆ω are given by ϕ = ψ−Ωt, and ∆ω = Ω−ω,
respectively [20]. The interaction function, Γ(ϕ), is ob-
tained from the forcing waveform f and the phase response
function, Z, as Γ(ϕ) = ⟨Z(θ + ϕ) f (θ)⟩, where θ represents
Ωt and ⟨·⟩ denotes the average by θ over its period 2π:
⟨·⟩ ≡ (2π)−1

∮
· dθ. It is noted that Eq. (2) has been known

as the Adler’s equation [6]. Entrainment occurs when the
phase difference is locked, i.e., dϕ/dt = ∆ω + Γ(ϕ) = 0
[11]. The range of frequency difference, ∆ω, where solu-
tion for stable steady state exists for ϕ defines the locking
range R[f ] for a certain forcing waveform [21]. Therefore,
the locking range is the difference between the maximum
(at ϕ = ϕ+) and minimum (at ϕ = ϕ−) values of Γ(ϕ) where
phase locked solution exists [22]. R[ f ] is thus given by
Γ(ϕ+) − Γ(ϕ−) as shown in Fig. 2.

○

○

Figure 1: The locking range R[ f ] defined by the difference
between the maximum (Γ(ϕ+)) and minimum (Γ(ϕ−)).

3. Variational calculation for optimal forcing wave-
forms

Now we are in position to formulate the optimal entrain-
ment problem mathematically: the optimal forcing wave-
form ( fopt) maximizes the locking range R under certain

constraints. A convenient practical constraint is the total
power of the waveform over its period: ⟨ f (θ)2⟩. Therefore,
the optimal forcing waveform, fopt gives maximal locking
range for a given (constant) forcing power P. We con-
sider this as a variational problem maximizing the func-
tional form

S[ f ] ≡ R[ f ] − λ(⟨ f 2⟩ − P), (3)

where λ is the Lagrange multiplier. Solution to the vari-
ational problem, f∗, a suitable candidate for the optimal
waveform, is obtained by ensuring that the first variation
δS vanishes and the second variation δ2S is negative [23]:

f∗(θ) = (2λ)−1{Z(θ + ϕ+) − Z(θ + ϕ−)}. (4)

The Lagrange multiplier can be obtained by substituting the
solution Eq. (4) in the constant power constraint (⟨ f 2

∗ ⟩−P =
0): λ = (1/2)

√
Q/P with Q ≡ ⟨{Z(θ + ϕ+) − Z(θ + ϕ−)}2⟩.

Note that f∗ in Eq. (4) has zero average: ⟨ f∗⟩ = 0.
To obtain f∗ of Eq. (4) the maximum (ϕ+) and the mini-

mum (ϕ−) ϕ values of Γ with the forcing waveform

Γ(ϕ) =
√

P/Q ⟨Z(θ + ϕ){Z(θ + ϕ+) − Z(θ + ϕ−)}⟩ (5)

have to be determined. The conditions for the maximum
and minimum of Γ are as follows:

Γ′(ϕ±) = 0, Γ′′(ϕ+) < 0, and Γ′′(ϕ−) > 0. (6)

The first condition in Eqs. (6), combined with Eq. (5),
gives

⟨Z′(θ + ϕ+)Z(θ + ϕ−)⟩ = ⟨Z′(θ + ∆ϕ)Z(θ)⟩ = 0 (7)

where ∆ϕ ≡ ϕ+ − ϕ−. (∆ϕ is introduced to remove phase
ambiguity). We shall refer to Eq. (7) as balancing condition
because this equation realizes optimality by balancing both
terms in Eq. (4). The trivial ∆ϕ = 0 solution to Eq. (7) is
discarded because it does not allow entrainment (Γ(ϕ) ≡ 0
in Eq. (5)).

However, other solutions do exist in Eq. (7), because
∂⟨Z′(θ + ∆ϕ)Z(θ)⟩/∂∆ϕ|∆ϕ=0 = −⟨Z′(θ)2⟩ < 0, and ⟨Z′(θ +
∆ϕ)Z(θ)⟩ is a periodic, bounded function of ∆ϕ in a large
class of systems [1]. In particular, we have found that in
models with twice differentiable, continuous Z a solution
with ∆ϕ = π exists; we call this solution and the corre-
sponding optimal waveform ‘generic’ [25].

4. Numerical verification of theoretical predictions

Here we test the above theoretical predictions by a sim-
ple model with the following response function,

Z(θ) = sin θ + a sin(2θ). (8)

This Z simulates the behavior of Stuart-Landau oscillator
[1] with a = 0; therefore, we can consider a as a mea-
sure of distance from Hopf bifurcation that can introduce

- 95 -



Figure 2: Phase response function Z(θ) of Eq. (8). Panel
(a) represents the case of near Hopf bifurcation point. Panel
(b) represents the case being far away from Hopf bifurca-
tion point.

higher harmonics in the response function. Figure 2 shows
variation in the shape in Z as a is increased. The bal-
ancing condition of Eq. (7) for this model is explicitly
written as

[
1 + 4a2 cos(∆ϕ)

]
sin(∆ϕ) = 0. For |a| < 1/2,

there is only one (nontrivial) solution ∆ϕ = π. The opti-
mal waveform for this generic solution is independent of
a: fopt(θ) = −

√
2P sin θ. Although the response function

does contain second order harmonic for 0 < |a| < 1/2,
this term does not affect the shape of the optimal wave-
form. This finding suggests that with Z containing only
weak second (or, in general even) harmonics the sinusoidal
forcing is the optimal since the generic solution to balanc-
ing condition always exists. For example, for systems close
to Hopf bifurcation, which contain mostly first and weak
second (even) harmonics in Z, the optimal waveform is si-
nusoidal. However, the odd harmonics do appear, as the
system goes beyond Hopf bifurcation, in the generic opti-
mal waveform and thus systems with relatively strong third
(and higher odd) harmonics are expected to retain the odd
harmonics in the optimal waveform. For the generic solu-
tion the locking range is calculated as R =

√
2P, which is

again independent of a.
In the range |a| ≥ 1/2, we have three different so-

lutions for the balancing condition and thus three candi-
dates for optimal waveform. The generic solution with
∆ϕ = π exists, however, there appear two additional,
‘non-generic’ solutions satisfying cos∆ϕ = −1/4a2. For
these non-generic solutions the locking ranges are identi-
cal: R = (1 + 4a2)

√
P/(2

√
2a) ≥

√
2P. This shows that

in the range |a| ≥ 1/2, the non-generic optimal waveforms
outperform the generic waveform; for large values of a,
the improvement of locking range for the non-generic over
generic waveforms increases approximately linearly. The
non-generic waveforms are not purely sinusoidal and de-
pend on the parameter a. Figure 3 shows the best optimal
waveforms for the case of a = 0.2 (< 1/2) and the case of
a = 0.95 (> 1/2) respectively.

We have also verified these theoretical predictions, by
using a standard genetic algorithm (GA) which numeri-
cally searches for fopt. Figure 4 (a) shows all fopt obtained

○

○

○

Figure 3: Theoretically obtained optimal waveforms. P is
set 0.5, and a is given as a = 0.2 (< 1/2) and a = 0.95
(> 1/2) respectively. (i) For the case of a = 0.2, only
generic solution exists (red curve). (ii) For the case of
a = 0.95, two non-generic solutions exist (blue curve and
green curve) in addition to the generic solution.

by the algorithm, for both cases of full (Eq. (1)) and av-
eraged (Eq. (2)) phase models, with ω = 10, a = 0.95
(> 1/2) and P = 0.5 or P = 10.0. The numerical algo-
rithm found the exact same optimal waveform as predicted
by the theory, for both cases up to around P = 2.0. The
numerical value of the locking range for these optimal so-
lutions (maximum in R landscape in Figure 4 (b)) is also
the same as predicted by the theory; the non-generic opti-
mal solution performs about 23.1% better than the simple
sinusoidal (generic optimal) forcing, and also it performs
about 89.8% better than the pulse forcing in Figure 6. Be-
yond P = 2.0, a small discrepancy appears in the optimal
waveforms obtained with the genetic algorithm. However,
the shape of bimodal landscapes of R[ f ] in Fig. 4 (b) is pre-
served up to around P = 10.0 for the case of Eq. (1), which
suggests that, at least in this particular example, beyond the
strictly weak forcing limit, the theoretical prediction of op-
timal waveform could be used as an initial candidate that
can be further optimized with other techniques.

5. Applications: from van der Pol oscillators to CMOS
ring oscillators

As applications of the presented theory to a more prac-
tical system, here we consider how optimal entrainment
is realized for the well-known van der Pol oscillator and
more practical CMOS ring oscillators, with a weak injec-
tion. The case of CMOS ring oscillators is omitted here,
due to space limitation. However, this will be presented
in the conference. The van der Pol oscillator is one of the
most important nonlinear oscillators in electrical engineer-
ing. For instance, when we consider the injection-lock phe-
nomena in high frequency (; RF) oscillators, the van der Pol
equation provides a simplest description of the phenomena
as the first approximation [28]. The system is given as the
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Figure 4: Optimal forcing fopt obtained in the model with
the response function of Eq. (8). Panel (a) shows all fopt,
after rescaling for comparison, obtained by the genetic al-
gorithm for a = 0.95: red and blue curves for P = 0.5
with Eq. (2), dotted curves for P = 10.0 with Eq. (1). In
this genetic algorithm, fopt is searched among all functions
of the form c1sinθ + c2sin(2θ + ψ2). Panel (b) shows the
landscape of R for a = 0.95 (> 1/2), with respect to (c1,
ψ2). The peaks 1 and 2 of the landscape correspond to the
waveforms 1 and 2 in panel (a), respectively.

following ordinary differential equation:

ẋ = y, (9)
ẏ = −x + µ(1 − x2)y + f (θ),

where the (non-dimensionalized) variables x and y respec-
tively represents the voltage and the current across some
resistor of the oscillator. Also, we assume here the weak
forcing f (ϕ) in the second equation of Eq. (9) is applied as
an injected current. The parameter µ represent the degree of
nonlinearity for the negative resistor in the oscillator. Here
we choose this value as µ = 1.0, for which its oscillation
becomes slightly relaxational and the phase response func-
tion is obtained as in Fig. 5. Once we have obtained the
phase response function Z(θ), it is now possible to design
the optimal forcing of f (θ) by the presented algorithm in
Sec. 3. In this particular example of moderately nonlinear
oscillation, Z(θ) can be approximated as

Z(θ) ∼
3∑

n=0

(an cos nθ + bn sin nθ). (10)

Figure 5: Limit-cycle oscillation and phase response func-
tion in the modelately nonlinear van der Pol oscillator
(µ = 1.0). Panel (a) shows the limit-cycle oscillation in the
(x, y)-plane. Panel (b) shows the phase response function
obtained from small phase shifts (×) by applying a small
impulse [29]. (The applied impulse is shown in Fig. 6.)
The approximated phase response function (red curve) is
obtained by the least squares fitting to the Fourier series up
to the third harmonics.

Then, the balancing condition ⟨Z′(θ + ∆ϕ)Z(θ)⟩ = 0, which
determines the unknown ∆ϕ in the optimal forcing fopt =√

P/Q{Z(θ + ∆ϕ) − Z(θ)}, is explicitly obtained with a
straightforward calculation as

sin (∆ϕ){cos2 (∆ϕ) + α cos (∆ϕ) + β} = 0, (11)

where α and β are given as α = (a2
2 + b2

2)/3(a2
3 + b2

3)
and β = (a2

1 + b2
1)/12(a2

3 + b2
3) − 1/4 respectively. Since

the coefficients in Eq. (10) are respectively obtained as
a0 = 7.68× 10−3, (a1, b1) = (−1.68× 10−1, −5.07× 10−1),
(a2, b2) = (9.29 × 10−5, 1.61 × 10−3), and (a3, b3) =
(−6.10 × 10−2, 1.57 × 10−2), α and β are respectively ob-
tained as α = 3.02 × 10−3 and β = 8.29 × 10. Then, Eq.
(11) is reduced to sin (∆ϕ) = 0 since α2 − 4β < 0. From
sin (∆ϕ) = 0, ∆ϕ is obtained as 0 or π. Since ∆ϕ = 0
corresponds to the trivial solution as mentioned in Sec. 3,
the solution of Eq. (11) is uniquely determined as ∆ϕ is π.
Thus, for this example, the only possible optimal forcing is
obtained as

fopt(θ) =
√

P
Q
{Z(θ + π) − Z(θ)} (12)

This theoretical prediction is also tested by the genetic
algorithm (GA) mentioned in Sec. 4, as follows. For this
example, fopt is searched among all functions of the form
c1 sin θ + c2 sin(2θ +ψ2)+ c3 sin(3θ +ψ3). We find that GA
quickly converges to any functions with c2 = 0, c1 , 0,
and c3 , 0. The reason for this convergence to c2 = 0 is
now clear. Since this unique optimal forcing Eq. (12) has
Z2 symmetry and all even harmonics vanish, then c2 = 0
and GA search approaches such functions quickly. Figure
7 shows the landscape of R with respect to (c1, ψ3). As we
see in Fig. 7, the landscape has only one peak and we have
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Figure 6: Optimal forcing waveform fopt and other forc-
ing waveforms. fopt: theoretically obtained optimal forc-
ing waveform (P = 0.05). fGA: optimal forcing wave-
form obtained by GA (P = 0.05, P = 0.4). Note that
fGA perfectly matches to fopt at P = 0.05. Here we also
plot the applied impulse (width=0.05 [rad], height=+0.25)
for obtaining Z(θ), the pulse forcing (width=2π/10 [rad],
amplitude=0.5), and the oscillation waveform of y(Ωt) in
the (entrained) van der Pol oscillator.

verified this peak always corresponds to fopt in Eq. (12),
when P is less than a certain value (∼ 0.171). Beyond this
value, the landscape of R still has the same structure with
only one peak. However, this peak corresponds to a slightly
deformed waveform from fopt in Eq. (12), shown as fGA in
Fig. 6.

Summarizing these observations, the theoretically ob-
tained optimal forcing fopt to the van der Pol oscillator is
valid under low power injections (; P < 0.2).

6. Conclusion

Construction of optimal injection waveform for entrain-
ment was proposed and tested here with a single oscillator.
The method, however, can be extended to a group of in-
teracting oscillators where effects related to the collective
phase response function [27] shall be considered. The opti-
mal signal can also be applied in closed-loop feedback sys-
tems along with synchronization engineering [26] for seek-
ing optimal target dynamics. A limitation of the methodol-
ogy is the requirement for weak forcing so that phase mod-
els can be applied. This limitation leads to an extension of
the method where the injection signal is limited to small
values. These extensions, along with other targets that con-
sider stability and basin of attraction with/without environ-
mental noises, will be considered in a forthcoming publi-
cation. The proposed methodology provides a framework
for efficient design of entrainment applications in electrical
circuit technology (e.g., for injection-locked oscillators) as
well as in biological pacemakers.

↓
◯

◯

Figure 7: Landscape of R in the genetic algorithm. (a) 3D
plot of the landscape. The peak is obtained at (c1, ψ3) =
(0.313, 0.854) for P = 0.05. The corresponding fGA with
(c1 ψ3) = (0.313, 0.854) is plotted in Fig. 6. (b) 2D sec-
tion of the landscape. The peak is obtained at (c1, ψ3) =
(0.313, 0.854) and (c1, ψ3) = (0.893, 2.986), respectively
for P = 0.05 and P = 0.4. The corresponding fGA with
(c1, ψ3) = (0.893, 2.986) is plotted in Fig. 6.
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