
Clustering CNN devices for smart networks

Lambert Spaanenburg† and Suleyman Malki‡

† Department of Electronic and Information Technology, Lund University

P.O. Box 118, 22100 Lund, Sweden
‡Department of Electronic and Information Technology, Lund University

P.O. Box 118, 22100 Lund, Sweden
Email: lspaanenburg@ieee.org, Suleyman@eit.lth.se

Abstract– Cellular Neural Networks promise an

optimal implementation of non-linear systems. It is hard to
keep that promise on platforms with limited capacity.
Literature shows that a tiled processor array can be
configured to an algorithm-specific processor to facilitate
this in a network node. The paper discusses whether such
can be scaled up towards smart networks.

Recently a CNN processor is developed that can work
in both modes. A reconfigurable CNN network is
supplemented by program- and data stores, which can be
loaded from the attached client processor. After loading,
the network can independently perform pixel processing
and feature recognition on the current image memory
while communicating results with the client processor
where higher-order image processing will take place.

1. Introduction

processor

Image
memory

CNN

The beauty of Cellular Neural Networks (CNN) lies in

the elegant coupling of the mathematical formulation to
the silicon implementation. Not every algorithm works
nicely on silicon. In fact, the performance gap between
function and realization is rapidly growing. This ‘more
than Moore’ gap has become a curse for areas where high
speed has to be compromised to low power dissipation.
Pervasive computing will bring networks of hundreds of
ambient sensors, each as powerful as last year’s
supercomputer. Clearly this dream can only be fulfilled if
the computational power goes down by factors.

Figure 1: Architecture of streaming CNN system.

The paper is composed as follows. First different

scaling aspects of the proposed processor are discussed.
Then we look at the modeling of boundary conditions by
virtual cells and how these impact network scalability.

The promise of cellular networks is founded on the lack
of global control. Where there is no need to schedule /
monitor the overall operation, the realization may show up
only short wires between synchronous gates and therefore
a potentially higher clock rate. But it has not been trivial
for CNNs to convert this potential to the real benefit
within a large system and/or network.

2. Scaling aspects of the single CNN node

The CNN equation is in its mathematical notation

parametrizable, as the constructs are defined over linear
ranges. The nature of the 'more than Moore' gap is
essentially this lack of reflection on the potential of the
target technology. For a network of devices it is
mandatory that all platforms where a function can be
executed, this function is executed with either the same or
a pre-known performance. In this paper we will largely
look at numerical aspects as these set the usability of the
results.

For historical reasons the older CNN realization is the
analog focal-plane image processor [1]. The light diodes
capture the image in parallel, but getting the image out by
line takes considerable time. At least, it is necessary to
separate image extraction from transport by intermediate
saving of the pixel values. Notable improvements in
performance are further reached by pre-processing the
pixels locally to decrease the communication load [2].

The first streaming CNN architectures are based on a
pixel-flow mechanism, where a pixel-processing pipeline
performs the iterations in time, finally writing the results
of a single pixel operation back into memory [3]. The
alternative is a tiled architecture, where the streaming is
reduced to a pixel line FIFO [4]. Each FIFO element
corresponds to a cell in a matrix of simple processing
elements with an on-chip network for internal
broadcasting. The network applies subsequent instructions
while iterating to a stable result before returning to
memory.

Number values are not restricted on the algorithmic
level, but will become limited when transferred to the
implementation level. Algorithms do not take
implementation details such as the effect of finite number
representation on a hardware platform into account. The
usual design approach starts by building an accurate and
precise model, initially cast into software using double-
length floating-point numbers for all the values. Realizing
this model in a specific technology implies the need to
limit the values in accuracy and/or precision.

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 91 -

Table 1 Typical data representation of a digital DT-CNN. The
notation <k:l> means that the number consists of k-bits integer
part and l-bits fractional part.

Accuracy is a concern for realizations where the model
parameters cannot be exactly realized or produced by
measurements. Numbers may spread out over a value
interval, and it must be validated that the algorithm will
work even in extreme, i.e. worst-case, situations, the so-
called corner cases. Conversely, the realization must be
based on numbers in the middle of the assumed value
interval, the so-called design centering, and aims to make
the design ‘robust’. Therefore the proper estimation of
value spread is a crucial part of the development.

Value Fixed‐point notation
u and y value <1:7>
a and b coefficients <4:4>
Bias <5:3>
Multiplication results <5:11>
State x <10:11>
 Along similar lines, precision is a concern where the

values cannot be realized due to component noise or by
limited capacity of the platform. Where accuracy brings
the numbers close to the nominal value, precision makes
them repeatable. Lack of accuracy may bring values that
are still precise but completely off-target, while lack of
precision may bring values that are still accurate but
change per run of the algorithm. Hence precision needs
validation with respect to the ‘ideal’ model. Conversely,
the realization must be based on numbers that are easy for
the technology, but that do not lead to value creep. This is
for instance a typical concern of float-to-fix conversion on
a digital platform.

Fixed-point number representation is usually not
enough when the CNN handles dynamic behaviour. It is
reported that 36-bits numbers are required to handle 2nd-
order differential equations. But this is not necessarily a
maximum and one may wonder whether it is enough.
Therefore the reasonable extension is the block floating-
point format. It splits the requirement for precision and
accuracy into two parts: the width of the mantissa sets the
precision while the scale factor turns this into accuracy. In
case of CNNs, full floating-point representation is not
necessary as all the scale factors within the block of nodal
template values are identical. Sofar a 5-bit scaling for an
8-bit mantissa has sufficed in experimentation. The implementation becomes tractable for systems with

constrained inputs where both the value spread and the
value creep can be determined by inspecting a finite
number of cases. In such circumstances it becomes
possible to automatically derive the design constraints for
the algorithm in question. A particular test case is the
Cellular Neural Network (CNN). It is a regular array of
cells, each interacting with the 8 neighbours from the
neighbourhood Nr(c) over 8 inputs u and outputs y, both in
the range between -1 and +1, according to

3. Networking the nodes into a CNN

As a concept, the Cellular Neural Network promises a 1-
cell-per-core solution. But even when the core can be
made extremely small, the size of the network will be
limited. For a focal-place processor, this is no issue as the
network is implicitly at the size of the problem. But in
general the problem has to be cut into parts, and in turn
the parts have to be suitably mapped onto the platform. As
a typical algorithmic approach, the solution is also
dependent on the initialization. In the spatial
implementation, such initial values are provided over the
boundary of the structure. To properly model this in line
with the nodal implementation of a cell requires a
specialized node to deliver the boundary value. This
overhead can be substantial.

(1)

with a final squashing discriminator that turns x into
the local u while considering a bias i. All the cells receive
8-bit values, while the coefficients ‘a’ and ‘b’ can also be
scaled into an 8-bit interval. The worst-case need for
internal representation grows gradually to 21 bits (Table
1).

(1) (2) (3)

(5) (6)(4)

(8)(7)

Top

(1) (2) (3)

(5) (6)(4)

(8)(7)

Right upper corner

Previous work on CNN template robustness went in
two directions. A first point of interest was the formal
proof on template universality. As the proof inspects the
algorithm, it shows that convergence can exist [5]. The
second _ and related _ approach is by adaption of the
coefficients to achieve design centering, either
algorithmically [6] or statistically [7]. Such research
assumes an analogue realization and therefore a fixed
precision of 7 – 8 bits [8]. Some effort is on binary
coefficients for special applications, such as the pixel
snake [9]. The full exploration of robust behaviour is
experimentally shown in [10] and gets a more formal
basis.

Figure 2: Boundary nodes have an incomplete
communication cycle. Squares represent regular nodes while
the dotted lines show which part of the packet path is
missing. The node of interest is shaded.

- 92 -

Traditionally, the effect of boundary conditions is

modelled by adding virtual nodes on the edge of the
network. These virtual nodes either supply the boundary
nodes with a predefined value (fixed boundary condition)
or mirror the value of the boundary node itself (Zero-flux
boundary condition). The problem here is further
complicated by the asymmetry of the pre-scheduled
communication pattern: boundary nodes experience
different needs depending on their position in the network.
Figure 2 (left) illustrates the disturbed communication
cycle for top boundary nodes. The situation is even worse
for the corner nodes (Figure 2 right). Actually, not only
boundary nodes are affected by the incompleteness of
broadcasting but even close-to-boundary nodes as well
(Figure 3 left).

Employing the traditional approach of adding virtual
nodes is not as simple as it may seem. It is unable to solve
the problem entirely and adds on the network size. In any
prescheduled communication scheme, virtual nodes
should follow the sequence of sending (and eventually
forwarding) of values that is accommodated by all regular
nodes in the network. This works fine for close-to-
boundary nodes (Figure 3 left), but the communication
path is still incomplete for boundary nodes. It is clear
from Figure 3 (right) that top boundary nodes will not
receive any data in steps (4), (5) and (6). In other words,
the partially asymmetric transfer cycle necessitates the
existence of two (!) layers of virtual nodes to achieve
completion. This situation exists for boundary nodes
located on the bottom and on the right side of the network
as well, but the left edge nodes need only one layer
(Figure 2).

(1) (2) (3)

(5) (6)(4)

(8)(7)

(1) (2) (3)

(5) (6)(4)

(8)(7)

(1) (2) (3)

(5) (6)(4)

(8)(7)

Figure 3: Broadcasting scheme of close-to-boundary nodes
(left) is incomplete but the situation is salvaged by adding a
single layer of virtual nodes (middle). For boundary nodes
more than one layer of virtual nodes is needed (right).

Hence, for an R(ow) x C(olumn) CNN, the number of
virtual nodes is equal to 4C+3R+12. Each virtual node
needs a router to send and forward packets, a local register
and a simplified controller, which will require around 25
slices per node! This seriously degrades area utilization
and there is a pressing need to replace the virtual nodes by
a simpler mechanism that still completes the
communication cycle.

We aim here for a total removal of the need for virtual
nodes. This is possible by slightly refining the

communication pattern of boundary nodes. Let’s consider
top and bottom boundary nodes (Figure 2). The actions
have to be performed in addition to the regular
functionality of the node, mainly when a zero-flux
boundary condition is used. For fixed boundary condition
most of the sending/forwarding is redundant as all
boundary nodes will need to store a single fixed value
only that can be used instead of the received value.

Implementing the actions introduces the need for
boundary nodes to, sometimes, send or receive two
packets simultaneously, which requires a remarkable
redesign of the nodal controller and the router in addition
to the need of an extra register that keeps one value (W-
value). Once again, different boundary nodes will require
different refinements. This is of course better than the
virtual nodes approach, but still increases the area
considerably. A better solution makes use of the existing
routing mechanism to forward boundary conditions. We
call it ‘swing broadcasting’ as each boundary node will
send its own value to one neighbouring boundary node
and then to the other boundary node in the opposite
direction. Due to the use of duplex lines between the
nodes, the inter-nodal connections have to be idle for one
time step in between (Figure 4). In this case, all boundary
nodes will have the value of their neighbouring boundary
nodes available locally. This requires two additional
buffering elements to store the values, but the effect on
area utilization is kept at a minimum. Overall, 3 time steps
are introduced for each newly calculated y-value.

(a) (b) (c)
Figure 4: Swing broadcasting allows distributing of
boundary conditions in three steps clock-wise (a) and anti-
clock wise (c). For proper functionality on the duplex lines a
separating idle step is introduced (b).

4. Partition and Merge

But boundary nodes terminate the field of computation.
Whether this is good or bad depends on the partition style.
In an hierarchical partition each node represents a number
of cells. By going down the hierarchy the problem size
gets limited and each node represents less cells until
eventually we have a 1-to-1 correspondence on the
problem sized to the available platform. In a distributive
partition we cut through the problem thereby creating
boundaries. This essentially disturbs the behavior. So
simply slicing is only affordable when bouncing is not
required by the interaction of the cells. Most of the image-
processing applications are of this type.

Shared memory allows for inter-cell reaction without
much change to the boundary concept. If new data is
written to a boundary cell, this will automatically be

- 93 -

copied into shared memory. Reading a value from a
boundary cell will be re-routed from shared memory, if
previously invalidated. Such mechanisms are easily
incorporated into the cache coherence protocol of a multi-
core system. The system efficiency relies on the designed-
in elimination of memory access conflicts. It is illustrative
to judge the severity of this problem by looking at the
relative size of the boundary. Given n-by-n functional
cells we have 4(n+1) boundary cells. The difference n2-
4n-4 gets quadratic larger with increasing network size
and is already substantial for moderate value. For
instance, with n equals 20 we have 5 times more
functional than boundary cells.

A shared memory has its main advantages in
combination with general-purpose, pipelined cores. Such
software-based solutions are known to be much slower
than algorithm-specific integrated circuits. Even when
both architectures are implemented on an FPGA, the
speed difference of a factor 10 is easily incurred. But the
use of standard, high-volume parts produced in the latest
technology will compensate for this, at least partly.

A modern FPGA is more like a logic-enhanced
memory. When a network is partitioned, it creates
boundary cells shared 2-by-2 on each cut. Clearly the
overall system should work as if no cuts were made, or in
other words no boundary cells are inserted. Further it is
desirable that the boundary cells do not correspond to
package pins.

This seems similar to the Boundary Test approach. In
BT we have ports that we want to set, test & scan separate
from the chip interior without introducing (many)
additional pins. We already have the boundary chain but
we do not want the ports to be each physical. In general,
the ways to do this are based on multiplexing: (a) in space
through a rotating buffer, or (b) in time through encoding.

5. Discussion

The previous methods have enabled the design of a
configurable single node CNN architecture. But a single
node is not enough to create an intelligent system. Next to
interaction, where nodes perform actions based on
directions from other nodes, we need reaction whereby
also the ongoing actions are changed. The simplest
example of such reactivity is where CNN vision nodes
adapt the image parts to look at and the granularity to
work with.

A typical smart vision sensor is comprised of three
layers. On the lowest level we find the pure pixel
operations. This is where the need for a high data-
handling rate usually leads to a dedicated pixel processor.
The feature processing is performed to retrieve
information. Finally, this is further condensed to
knowledge by reasoning on the extracted features. For
example, on the WiCa platform pixel-processing is
performed by the IC3D stream-processing chip, while all
higher levels are handled by a 80xx processor [11].

The principle benefit of a Cellular Neural Network is
that as a computing paradigm it handles both the pixel
processing and the feature extraction. Usually it provides
also some basic reasoning. As the potential for parallel
processing is extended to cover at least information
gathering, it is in principle much faster. For the moment, a
disadvantage remains that no theory on co-operating
CNNs is available.

The hierarchical approach has been used in the
development of an algorithm-specific integrated processor
that runs simple integer software together with CNN
programs [12]. The integer processor is hardly burdened
with CNN-related activities but largely functions as
network server and knowledge exchanger. This supports
the creation of vision through multiple intelligent vision
sensors in a low capacity communication network, in
extension of arrays of bare cameras with a high-speed
connection to a single server.

References

[1] G. Liñán, S. Espejo, R. Dominquez-Castro, E. Roca, and

A.Rodriguez-Vázquez, “A 0.5 um CMOS 106 transistors
analog programmale array processor for real-time image
processing,” Proceedings ESSCIRC, 1999, pp. 358 – 361.

[2] A. Jimenez-Marrufo et al., “Data Matrix Code Recognition
Using the Eye-RIS Vision System,” Proceedings ISCAS,
2007, pp. 1214 – 1214.

[3] A. Zarandy et al., “An emulated digital architecture
implementing the CNN Universal Machne,” Proceedings
CNNA, 1998, pp. 249 – 252.

[4] S. Malki, “On hardware implementation of discrete-time
cellular neural networks,” Ph. D. thesis, Lund University
(Lund) 2008.

[5] M. Hänggi and G.S. Moschytz. Analytic and VLSI Specific
Design of Robust CNN Templates. Journal of VLSI Signal
Processing, Vol. 23, 415-427, 1999.

[6] P. Foldesy et alieni. Fault-tolerant design of analogic CNN
templates and algorithms-Part I: The binary output case.
IEEE Trans. on Circuits and Systems I: Fundamental
Theory and Applications, Vol. 46, Nr. 2, pp. 312-322, 1999.

[7] S. Xavier-de-Souza et alieni. Towards CNN chip-specific
robustness. IEEE Trans. on Circuits and Systems I, Vol. 51,
Nr. 5, 892-902, 2004.

[8] B. Mirzai, D. Lím and G. S. Moschytz, “Robust CNN
Templates: Theory and Simulation,” Fourth IEEE
International Workshop on CNNs and their Applications,
Seville, Spain, 1996, pp. 393-398.

[9] V. Brea, M. Laiho and A. Paasio, “Robustness in binary
cellular neural networks, Proceedings ISCAS (Kos, Greece,
2006) pp. 2661-2664.

[10] W.-H. Fang, C. Wang and L. Spaanenburg, “In Search for
Robust Digital CNN System,” Proc. 10th IEEE Workshop
on CNNA and their Applications, Istanbul, Turkey, 2006,
pp. 328 – 333.

[11] M.A. Tehrani, R. Kleihorst, P.B.L. Meijer and L.
Spaanenburg, “Abnormal Motion Detection in a Real-Time
Smart Camera System,” Proceedings ICDSC (Como,
September 2009).

[12] L. Spaanenburg, and S. Malki, “Aspects of Algorithm
Specific Vision Processors,” to appear in: B. Hoefflinger
(ed.), “CHIPS2000 – A guide to our nanoelectronic future,”
Kluwer, 2011.

- 94 -

	Navigation page
	Session at a glance
	Technical program

