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Abstract– Cellular Neural Networks promise an 

optimal implementation of non-linear systems. It is hard to 
keep that promise on platforms with limited capacity. 
Literature shows that a tiled processor array can be 
configured to an algorithm-specific processor to facilitate 
this in a network node. The paper discusses whether such 
can be scaled up towards smart networks. 

Recently a CNN processor is developed that can work 
in both modes. A reconfigurable CNN network is 
supplemented by program- and data stores, which can be 
loaded from the attached client processor. After loading, 
the network can independently perform pixel processing 
and feature recognition on the current image memory 
while communicating results with the client processor 
where higher-order image processing will take place.  

1. Introduction 
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The beauty of Cellular Neural Networks (CNN) lies in 

the elegant coupling of the mathematical formulation to 
the silicon implementation. Not every algorithm works 
nicely on silicon. In fact, the performance gap between 
function and realization is rapidly growing. This ‘more 
than Moore’ gap has become a curse for areas where high 
speed has to be compromised to low power dissipation. 
Pervasive computing will bring networks of hundreds of 
ambient sensors, each as powerful as last year’s 
supercomputer. Clearly this dream can only be fulfilled if 
the computational power goes down by factors. 

Figure 1: Architecture of streaming CNN system. 
 
The paper is composed as follows. First different 

scaling aspects of the proposed processor are discussed. 
Then we look at the modeling of boundary conditions by 
virtual cells and how these impact network scalability. 

The promise of cellular networks is founded on the lack 
of global control. Where there is no need to schedule / 
monitor the overall operation, the realization may show up 
only short wires between synchronous gates and therefore 
a potentially higher clock rate. But it has not been trivial 
for CNNs to convert this potential to the real benefit 
within a large system and/or network. 

 
2. Scaling aspects of the single CNN node 

 
The CNN equation is in its mathematical notation 

parametrizable, as the constructs are defined over linear 
ranges. The nature of the 'more than Moore' gap is 
essentially this lack of reflection on the potential of the 
target technology. For a network of devices it is 
mandatory that all platforms where a function can be 
executed, this function is executed with either the same or 
a pre-known performance. In this paper we will largely 
look at numerical aspects as these set the usability of the 
results. 

For historical reasons the older CNN realization is the 
analog focal-plane image processor [1]. The light diodes 
capture the image in parallel, but getting the image out by 
line takes considerable time. At least, it is necessary to 
separate image extraction from transport by intermediate 
saving of the pixel values. Notable improvements in 
performance are further reached by pre-processing the 
pixels locally to decrease the communication load [2]. 

The first streaming CNN architectures are based on a 
pixel-flow mechanism, where a pixel-processing pipeline 
performs the iterations in time, finally writing the results 
of a single pixel operation back into memory [3]. The 
alternative is a tiled architecture, where the streaming is 
reduced to a pixel line FIFO [4]. Each FIFO element 
corresponds to a cell in a matrix of simple processing 
elements with an on-chip network for internal 
broadcasting. The network applies subsequent instructions 
while iterating to a stable result before returning to 
memory. 

Number values are not restricted on the algorithmic 
level, but will become limited when transferred to the 
implementation level. Algorithms do not take 
implementation details such as the effect of finite number 
representation on a hardware platform into account. The 
usual design approach starts by building an accurate and 
precise model, initially cast into software using double-
length floating-point numbers for all the values. Realizing 
this model in a specific technology implies the need to 
limit the values in accuracy and/or precision. 
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Table 1 Typical data representation of a digital DT-CNN. The 
notation <k:l> means that the number consists of k-bits integer 
part and l-bits fractional part. 

Accuracy is a concern for realizations where the model 
parameters cannot be exactly realized or produced by 
measurements. Numbers may spread out over a value 
interval, and it must be validated that the algorithm will 
work even in extreme, i.e. worst-case, situations, the so-
called corner cases. Conversely, the realization must be 
based on numbers in the middle of the assumed value 
interval, the so-called design centering, and aims to make 
the design ‘robust’. Therefore the proper estimation of 
value spread is a crucial part of the development.  

Value Fixed‐point notation
u and y value <1:7> 
a and b coefficients <4:4> 
Bias <5:3> 
Multiplication results <5:11> 
State x <10:11> 
 Along similar lines, precision is a concern where the 

values cannot be realized due to component noise or by 
limited capacity of the platform. Where accuracy brings 
the numbers close to the nominal value, precision makes 
them repeatable. Lack of accuracy may bring values that 
are still precise but completely off-target, while lack of 
precision may bring values that are still accurate but 
change per run of the algorithm. Hence precision needs 
validation with respect to the ‘ideal’ model. Conversely, 
the realization must be based on numbers that are easy for 
the technology, but that do not lead to value creep. This is 
for instance a typical concern of float-to-fix conversion on 
a digital platform.  

Fixed-point number representation is usually not 
enough when the CNN handles dynamic behaviour. It is 
reported that 36-bits numbers are required to handle 2nd-
order differential equations. But this is not necessarily a 
maximum and one may wonder whether it is enough. 
Therefore the reasonable extension is the block floating-
point format. It splits the requirement for precision and 
accuracy into two parts: the width of the mantissa sets the 
precision while the scale factor turns this into accuracy. In 
case of CNNs, full floating-point representation is not 
necessary as all the scale factors within the block of nodal 
template values are identical. Sofar a 5-bit scaling for an 
8-bit mantissa has sufficed in experimentation. The implementation becomes tractable for systems with 

constrained inputs where both the value spread and the 
value creep can be determined by inspecting a finite 
number of cases. In such circumstances it becomes 
possible to automatically derive the design constraints for 
the algorithm in question. A particular test case is the 
Cellular Neural Network (CNN). It is a regular array of 
cells, each interacting with the 8 neighbours from the 
neighbourhood Nr(c) over 8 inputs u and outputs y, both in 
the range between -1 and +1, according to 

 
3. Networking the nodes into a CNN 
 
As a concept, the Cellular Neural Network promises a 1-
cell-per-core solution. But even when the core can be 
made extremely small, the size of the network will be 
limited. For a focal-place processor, this is no issue as the 
network is implicitly at the size of the problem. But in 
general the problem has to be cut into parts, and in turn 
the parts have to be suitably mapped onto the platform. As 
a typical algorithmic approach, the solution is also 
dependent on the initialization. In the spatial 
implementation, such initial values are provided over the 
boundary of the structure. To properly model this in line 
with the nodal implementation of a cell requires a 
specialized node to deliver the boundary value. This 
overhead can be substantial.  

 

(1)

with a final squashing discriminator that turns x into 
the local u while considering a bias i. All the cells receive 
8-bit values, while the coefficients ‘a’ and ‘b’ can also be 
scaled into an 8-bit interval. The worst-case need for 
internal representation grows gradually to 21 bits (Table 
1).  
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Previous work on CNN template robustness went in 
two directions. A first point of interest was the formal 
proof on template universality. As the proof inspects the 
algorithm, it shows that convergence can exist [5]. The 
second _ and related _ approach is by adaption of the 
coefficients to achieve design centering, either 
algorithmically [6] or statistically [7]. Such research 
assumes an analogue realization and therefore a fixed 
precision of 7 – 8 bits [8]. Some effort is on binary 
coefficients for special applications, such as the pixel 
snake [9]. The full exploration of robust behaviour is 
experimentally shown in [10] and gets a more formal 
basis.  

 
Figure 2: Boundary nodes have an incomplete 
communication cycle. Squares represent regular nodes while 
the dotted lines show which part of the packet path is 
missing. The node of interest is shaded.   
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Traditionally, the effect of boundary conditions is 

modelled by adding virtual nodes on the edge of the 
network. These virtual nodes either supply the boundary 
nodes with a predefined value (fixed boundary condition) 
or mirror the value of the boundary node itself (Zero-flux 
boundary condition). The problem here is further 
complicated by the asymmetry of the pre-scheduled 
communication pattern: boundary nodes experience 
different needs depending on their position in the network. 
Figure 2 (left) illustrates the disturbed communication 
cycle for top boundary nodes. The situation is even worse 
for the corner nodes (Figure 2 right). Actually, not only 
boundary nodes are affected by the incompleteness of 
broadcasting but even close-to-boundary nodes as well 
(Figure 3 left). 

Employing the traditional approach of adding virtual 
nodes is not as simple as it may seem. It is unable to solve 
the problem entirely and adds on the network size. In any 
prescheduled communication scheme, virtual nodes 
should follow the sequence of sending (and eventually 
forwarding) of values that is accommodated by all regular 
nodes in the network. This works fine for close-to-
boundary nodes (Figure 3 left), but the communication 
path is still incomplete for boundary nodes. It is clear 
from Figure 3 (right) that top boundary nodes will not 
receive any data in steps (4), (5) and (6). In other words, 
the partially asymmetric transfer cycle necessitates the 
existence of two (!) layers of virtual nodes to achieve 
completion. This situation exists for boundary nodes 
located on the bottom and on the right side of the network 
as well, but the left edge nodes need only one layer 
(Figure 2).  
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Figure 3: Broadcasting scheme of close-to-boundary nodes 
(left) is incomplete but the situation is salvaged by adding a 
single layer of virtual nodes (middle). For boundary nodes 
more than one layer of virtual nodes is needed (right).  
 

Hence, for an R(ow) x C(olumn) CNN, the number of 
virtual nodes is equal to 4C+3R+12. Each virtual node 
needs a router to send and forward packets, a local register 
and a simplified controller, which will require around 25 
slices per node! This seriously degrades area utilization 
and there is a pressing need to replace the virtual nodes by 
a simpler mechanism that still completes the 
communication cycle.  

We aim here for a total removal of the need for virtual 
nodes. This is possible by slightly refining the 

communication pattern of boundary nodes. Let’s consider 
top and bottom boundary nodes (Figure 2). The actions 
have to be performed in addition to the regular 
functionality of the node, mainly when a zero-flux 
boundary condition is used. For fixed boundary condition 
most of the sending/forwarding is redundant as all 
boundary nodes will need to store a single fixed value 
only that can be used instead of the received value.  

Implementing the actions introduces the need for 
boundary nodes to, sometimes, send or receive two 
packets simultaneously, which requires a remarkable 
redesign of the nodal controller and the router in addition 
to the need of an extra register that keeps one value (W-
value). Once again, different boundary nodes will require 
different refinements. This is of course better than the 
virtual nodes approach, but still increases the area 
considerably. A better solution makes use of the existing 
routing mechanism to forward boundary conditions. We 
call it ‘swing broadcasting’ as each boundary node will 
send its own value to one neighbouring boundary node 
and then to the other boundary node in the opposite 
direction. Due to the use of duplex lines between the 
nodes, the inter-nodal connections have to be idle for one 
time step in between (Figure 4). In this case, all boundary 
nodes will have the value of their neighbouring boundary 
nodes available locally. This requires two additional 
buffering elements to store the values, but the effect on 
area utilization is kept at a minimum. Overall, 3 time steps 
are introduced for each newly calculated y-value.  

 

(a) (b) (c)  
Figure 4: Swing broadcasting allows distributing of 
boundary conditions in three steps clock-wise (a) and anti-
clock wise (c). For proper functionality on the duplex lines a 
separating idle step is introduced (b).  

 
4. Partition and Merge 
 

But boundary nodes terminate the field of computation. 
Whether this is good or bad depends on the partition style. 
In an hierarchical partition each node represents a number 
of cells. By going down the hierarchy the problem size 
gets limited and each node represents less cells until 
eventually we have a 1-to-1 correspondence on the 
problem sized to the available platform. In a distributive 
partition we cut through the problem thereby creating 
boundaries. This essentially disturbs the behavior. So 
simply slicing is only affordable when bouncing is not 
required by the interaction of the cells. Most of the image-
processing applications are of this type. 

Shared memory allows for inter-cell reaction without 
much change to the boundary concept. If new data is 
written to a boundary cell, this will automatically be 
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copied into shared memory. Reading a value from a 
boundary cell will be re-routed from shared memory, if 
previously invalidated. Such mechanisms are easily 
incorporated into the cache coherence protocol of a multi-
core system. The system efficiency relies on the designed-
in elimination of memory access conflicts. It is illustrative 
to judge the severity of this problem by looking at the 
relative size of the boundary. Given n-by-n functional 
cells we have 4(n+1) boundary cells. The difference n2-
4n-4 gets quadratic larger with increasing network size 
and is already substantial for moderate value. For 
instance, with n equals 20 we have 5 times more 
functional than boundary cells. 

A shared memory has its main advantages in 
combination with general-purpose, pipelined cores. Such 
software-based solutions are known to be much slower 
than algorithm-specific integrated circuits. Even when 
both architectures are implemented on an FPGA, the 
speed difference of a factor 10 is easily incurred. But the 
use of standard, high-volume parts produced in the latest 
technology will compensate for this, at least partly. 

A modern FPGA is more like a logic-enhanced 
memory. When a network is partitioned, it creates 
boundary cells shared 2-by-2 on each cut. Clearly the 
overall system should work as if no cuts were made, or in 
other words no boundary cells are inserted. Further it is 
desirable that the boundary cells do not correspond to 
package pins. 

This seems similar to the Boundary Test approach. In 
BT we have ports that we want to set, test & scan separate 
from the chip interior without introducing (many) 
additional pins. We already have the boundary chain but 
we do not want the ports to be each physical. In general, 
the ways to do this are based on multiplexing: (a) in space 
through a rotating buffer, or (b) in time through encoding. 

 
5. Discussion 
 

The previous methods have enabled the design of a 
configurable single node CNN architecture. But a single 
node is not enough to create an intelligent system. Next to 
interaction, where nodes perform actions based on 
directions from other nodes, we need reaction whereby 
also the ongoing actions are changed. The simplest 
example of such reactivity is where CNN vision nodes 
adapt the image parts to look at and the granularity to 
work with. 

A typical smart vision sensor is comprised of three 
layers. On the lowest level we find the pure pixel 
operations. This is where the need for a high data-
handling rate usually leads to a dedicated pixel processor. 
The feature processing is performed to retrieve 
information. Finally, this is further condensed to 
knowledge by reasoning on the extracted features. For 
example, on the WiCa platform pixel-processing is 
performed by the IC3D stream-processing chip, while all 
higher levels are handled by a 80xx processor [11]. 

The principle benefit of a Cellular Neural Network is 
that as a computing paradigm it handles both the pixel 
processing and the feature extraction. Usually it provides 
also some basic reasoning. As the potential for parallel 
processing is extended to cover at least information 
gathering, it is in principle much faster. For the moment, a 
disadvantage remains that no theory on co-operating 
CNNs is available. 

The hierarchical approach has been used in the 
development of an algorithm-specific integrated processor 
that runs simple integer software together with CNN 
programs [12]. The integer processor is hardly burdened 
with CNN-related activities but largely functions as 
network server and knowledge exchanger. This supports 
the creation of vision through multiple intelligent vision 
sensors in a low capacity communication network, in 
extension of arrays of bare cameras with a high-speed 
connection to a single server. 
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