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Abstract—Strength of synaptic connection changes
quickly due to short-term plasticity mechanism depending
on presynaptic neural activities. Such dynamic synapses
have much influence for neural network dynamics. In an
associative memory network, the depression-dominant dy-
namic synapses cause destabilization of the memory re-
trieved state and represent ongoing state transition among
memory patterns. In conventional associative memory
network model or Hopfield model, state of the network
changes so that its energy function always decreases; this
corresponds to the process of the memory recall. This mini-
mization of the energy function with neural dynamics is ap-
plicable to solve combinatorial optimization problems, e.g.
traveling salesman problem (TSP). The network structure
can be configured so that the optimal solution corresponds
to the lowest energy state. In general, there are multiple lo-
cal energy minimum, and the state of the network tends to
be trapped on a local minimum in the conventional network
model. Stochastic and/or chaotic dynamics are applicable
to avoid to be trapped on a local minimum. Here we use the
transitive dynamics induced by dynamic synapses to search
the space of solution of TSP. The network model composed
of the stochastic neurons and depression-dominant dynam-
ics synapses. We show that the transitive dynamics with
dynamic synapses enhances performance of solving STP
rather than a network with mere stochastic noise.

1. Introduction

Combinatorial optimization is a problem to find an op-
timal object from a finite set of objects and is intensively
studied in the field of information science. One of the
combinatorial optimization problem, the traveling sales-
man problem (TSP) is a typical nondeterministic polyno-
mial (NP)-hard problem. Various methods are proposed for
solving the TSP. One of the heuristic approach is based on
neural network dynamics, which is proposed by Hopfield
and Tank [1]. They applied gradient descent dynamics on a
neural network with symmetric mutual connections [2] to
the TSP. The decreasing property of the energy function is
utilized for finding a local minimal of an objective function
of the TSP. This decreasing process of the energy function

corresponds to the convergence of the state of the network
to an attractor in the dynamical system. This properties are
closely related to the model of the associative memory net-
work, which implements multiple memory patterns on the
connection weights of the neural network. The process of
the convergence to a memory pattern and decrease in the
energy function correspond to the process of memory re-
call [2]. However, the Hopfield-Tank neural network has a
notorious local minimal problem, namely, there are many
local minimum, the state of the neural network is trapped
on a local minimum, and thus, the state of the network can-
not reaches the global minimum.

In order to overcome the difficulty of the local minimal
problem, several methods are proposed. The simulated an-
nealing is know to be efficient with its stochastic dynamics.
The chaotic dynamics on the neural network also contribute
to avoid to be trapped on a local minimum. The attrac-
tors of the chaotic dynamics usually has fractal structures,
and thus, the chaotic search is efficient on the TSP [3, 4].
In the associative memory network, this chaotic dynamics
causes state transitions among the stored memory patterns
and shows sequential memory association [5].

In the above-mentioned conventional neural network
models, the strength of the recurrent synaptic connections
are assumed to be static. However, recent physiologi-
cal studies revealed that the the strength of the synaptic
connections changes largely and quickly with short-term
plasticity mechanism; these synapses are called dynamic
synapses[6]. Properties of the neural network with the dy-
namic synapses are intensively investigated [7, 8, 9]. In the
associative memory network with the dynamic synapses,
the network shows transitive dynamics among the stored
memory patterns [9]. The synaptic connections are de-
pressed depending on the state of the neurons, and the
memory recalled state becomes unstable.

In the present study, we use the transitive dynamics in-
duced by the dynamic synapses to improve the perfor-
mance of neural network for solving the TSP. The proposed
neural network model is composed of stochastic neurons
and depression dominant dynamic synapses. We evaluate
the influences of the noise on the neurons and the dynamic
synapses.
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2. Model

For a given set of cities and the distances between each
pair of cities, the TSP required to find a shortest route that
visits each city once and returns to the original city. The
Hopfield-Tank network implements this problem to the re-
current neural network withN×N neurons forN city TSP.
The possible route on the TSP is represented by the state
of the neuronsi j , wherei and j respectively represents the
index of the cities and the order of visiting, namely,si j = 1
represent to visiti th city at j th step of the route.

In the present study, we use the network model withN2

stochastic binary neurons, and the neurons are connected
via the dynamic synapses. The state of the (i, j)th binary
neuron is denoted by the variablesi j (t) and takes an active
state [si j (t) = 1] or a resting state [si j (t) = 0] according to
the following equation

Prob[si j (t + 1) = 1] =
1
2

(1+ tanh[βhi(t)]) , (1)

wherehi j (t) is the total input for the neuron (i, j). and 1/β =
T represents the noise intensity.

We use two types of recurrent connections, namely con-
nections with dynamic synapses and static synapses. The
strength of the connection on the static synapses is fixed,
and the input for the neuron (i, j) is described by

hi j (t) =
N∑
j,i

Wi jkl (2skl(t) − 1)+ θi j , (2)

whereas the input with dynamic synapses are given by

hi j (t) =
N∑
j,i

Ji j [2skl(t)xkl(t)ukl(t)/Use− 1] + θi j . (3)

In this network, weight values for both directions of each
pair of neurons is same, namelyWi jkl = Wkli j , and zero
weights for the self-connectionWi ji j = 0. θi j specifies a
bias input. Changes in the strength of the synaptic con-
nection is determined by the fraction of releasable neuro-
transmittersxi(t) and the utilization parameterui(t) [6]. The
state of the neuron and the dynamic synapses changes ac-
cording to the following equations [9]:

xi(t + 1) = xi(t) +
1− xi(t)
τR

− si(t)xi(t)ui(t), (4)

ui(t + 1) = ui(t) +
Use− ui(t)
τF

+ Use(1− ui(t))si(t),(5)

Use represents the steady state value of the variableui(t).
If the neuron is active, thexi is decreased depending on
the utilization parameter, whereasxi recover its steady state
xi = 1 with time constantτR. The utilization parameteru j

increases with the activation of the neuron and recovers its
steady stateu j = Use with time constantτF . The strength
of synaptic transmission is given by the product ofx j(t)

andu j(t); the strength decreases (depression) or increases
(facilitation) depending on the parametersτR, τF , andUse.

If T = 0, the network with the static synapses is equiv-
alent to the Hopfield-Tank network. In the Hopfield-Tank
network, the energy function

E = −1
2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Wi jkl si j skl +

N∑
i=1

N∑
j=1

θi j si j . (6)

always decreases by updating the state of the network asyn-
chronously. This property can be utilized to find minimal
value of an objective function.

The energy function can be configured for solving the
TSP [1]. The length of the route can be described by

E1 =

N∑
i=1

N∑
j=1

N∑
k=1

diksi j (sk, j+1modn+ sk, j−1modn), (7)

wheredik is the distance betweeni th and j th cities.
The constraint for visiting each city once is described by

E2 =

N−1∑
i=0

(
N−1∑
j=0

si j − 1)2. (8)

The constraint for visiting one city at once is described by

E3 =

N−1∑
j=0

(
N−1∑
i=0

si j − 1)2. (9)

In order to obtain an appropriate solution, above constraint
termsE2 andE3 should be zero. To find the optimal solu-
tion of the TSP, the objective function is defined by

ETS P= AE1 + BE2 +CE3 (10)

with coefficientsA, B, andC.
This objective function can be transformed to the form

of Eq. (6) by setting

Wi jkl = −Adik(δl, j+1 + δl, j−1) − Bδi,k(1− δ j,l) (11)

−Cδ j,l(1− δi,k), (12)

θi, j = −B+C
2
. (13)

In the Hopfield-Tank network, the objective function is
monotonically decreased, but the state often trapped on a
local minimal solution. In the present model, the stochastic
dynamics and the transitive dynamics induced by dynamic
synapses avoid to be trapped on the local minimal.

3. Results

In the present paper, the performance of the model is
evaluated withN = 10 cities TSP with the city map shown
in Fig.1. We set values of the coefficient asA = B = C = 1.
For the network with dynamic synapses, we fixedτF = 2
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Figure 1: The city map used in this paper, which is ap-
peared in [1]. The dots indicate the position of the cities.
The distances between each pair of citiesdi j are based on
this map.

andUse = 0.1, which means that the synapse undergoes
depression.

The typical time courses of the state of the network and
the energy function are shown in Fig. 2.

In the case of the network with static synapses and with-
out noise, which is equivalent to Hopfield-Tank model, the
state of the network quickly converge to a (local) minimal
solution, and the state is trapped on the (local) minimal so-
lution. There exist many local minimal solution, and the
state converge to one of them depending on the initial state
of the neural network.

By adding the noise (T > 0), even once the state con-
verge to a local minimum, the state escapes the local min-
imum and move to another solution. By continuing this
process long enough, the state can reach the global mini-
mum.

In the case of the network with dynamic synapses, we
choose values of parameters that the synapse undergoes
depression, and that the network make the state transi-
tion. Once the state converges to a local minimal, the
synapses connected from active neurons are depressed, and
this makes the state converged on the local minimal unsta-
ble and makes the state transitions.

Figure 3 compares the performance of these networks.
The performance is quantified by the minimal distance
when the network runs 200 step updates; the average value
of the minimal distance is calculated by 20 times simula-
tion with different initial state.

The performance largely depends on the intensity of the
noise. In the network with static synapses, the performance
is improved (the average distance is decreased) by increas-
ing the intensity of the noise tillT ≈ 1.5, but the perfor-
mance get worse if the noise intensity is further increased.
Appropriate strength of the noise contribute to avoid to be
trapped on local minimal solution and enhances the search
ability. However, the too much noise disrupt the tendency
to converge the local minimum.

Static synapses with noisy neuron (T=1.0)

Dynamic synapses with noisy neuron (T=0.1, τR=30, τF=2)

Static synapses (Hopfield model)
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Figure 2: Typical time courses of the state of the network
and the energy function. Blue dots indicatesi j = 1. Red
curves indicate the energy function. (a) The network with
static synapses and without noise (T = 0). (b) The network
with static synapses and with stochastic neurons (T = 1).
(c) The network with dynamic synapses. The energy corre-
sponding to the optimal solution of the TSP is indicated by
the dashed line.
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The performance of the network with dynamics synapses
depends on bothT andτR, which specifies the noise inten-
sity and the influence of the synaptic depression. If the
τR = 2, the property of the dynamic synapses close to the
static synapses, and its performance is similar to that of the
network with static synapses. If theτR takes an appropri-
ate value e.g.,τR = 30, the performance predominate the
network with static synapses.
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Figure 3: Performance of the model. Average distances of
the route on the TSP as a function of the noise intensity is
indicated by the solid curves. The optimal distance (short-
est route on the TSP) is indicated by the dashed line.

4. Conclusion

The transitive dynamics induced by dynamic synapses
improve the performance of searching the optimal solution
on the TSP. The network with dynamic synapses (partic-
ularly depression synapses) predominate the network with
static synapses with/without noise. The transitive dynamics
induced by the dynamic synapses has the tendency to ac-
tively escape from the local minimum rather than the mere
stochastic noise.

As a future study, we should compare the proposed
model to other heuristic methods, e.g. the network with
chaotic dynamics. Although we evaluated the performance
of the network on the small size problem (N = 10) on the
TSP in the present study, the performance should be eval-
uated on larger size problem and on other combinatorial
optimization problem e.g. quadratic assignment problem,
MAX-CUT problem.
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