

Implementation of Secure and Fast

Pseudo-Random-Number Generator on GPU

Hitoaki YOSHIDA†, and Takeshi MURAKAMI†

†Iwate University

18-33 Ueda, Morioka, Iwate 020-8550, Japan

Email: hitoaki@iwate-u.ac.jp, mtakeshi@iwate-u.ac.jp

Abstract– A novel iteration method with the modified

activation function has been proposed to implement the

secure and fast pseudo-random number generator (PRNG).

The modified activation function has accelerated the

pseudo-random-number (PRN) generation rate to 56.8 Tb/s

by using NVIDIA GPU (A100). The PRNG consists of

1.67×107 Chaotic and Random Neural Networks (CRNNs),

and the whole period of the PRN series is estimated at P ≈

10100000000 based on the L.C.M. of the 10000 PRN series.

The result is expected to apply the information security of

the Controller Area Network (CAN) and that of the

Autonomous GPU Accelerated systems, especially

intelligent vehicle systems.

1. Introduction

Recently, the information security of the Controller Area

Network (CAN) has attracted considerable attention [1].

We have reported the secure and fast cipher system by

using the PRNG based on fixed-point arithmetic (Q5.26)

[2- 5] and the application to the secure CAN [6].

NVIDIA has developed the Autonomous GPU

Accelerated system (AGX), which is designed and built for

all types of autonomous systems, including robotaxis. The

NVIDIA DRIVE Orin SoC is expected as the central

computer for intelligent vehicles, which is the integrated

GPU that is equipped with Ampere architecture CUDA

cores and TensorCores. The security system on GPUs is

rapidly increasing in importance.

This study aims to implement a faster PRNG by using an

optimized algorithm for the GPU architecture, moreover, to

implement a securer PRNG by extending the period of the

PRN series, extremely. The PRN series are expected as

one-time random numbers for disposable use.

2. Results and Discussion

2.1. Basics of CRNN

The network composed of 4 artificial neurons (N0-N3) in

the discrete-time system has been used for the PRNG

(Figure 1 and Equation 1) [2-5]. Ij is an external input of

the jth neuron (j = 0,1,2,3). An output of the jth neuron at

time t+1 is defined as equation 1. wij is a synaptic weight

between the ith neuron and jth neuron (i = 0,1,2,3), xi (t) is

an output from the ith neuron at time t and f is the

asymmetric piecewise-linear-function (APLF3) (Figure 2).

7-bit-rotate-left instruction is additionally executed before

the iteration only for x1 and x2.

The time series generated from CRNN can separate into

2 independent subseries: the α subseries and the β subseries

[2,7]. In other words, 2 independent subseries are

simultaneously generated (Table 1).

Figure 1: Chaotic and Random Neural Network (CRNN).

𝑥𝑗(𝑡 + 1) = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)

𝑛

𝑖=1

+ 𝐼) (1)

Computer-generated chaotic time series is eventually

periodic by the calculation with finite precision within our

knowledge. A perturbation ID (a randomly decided small

floating-point value) is added to an external input I at an

odd discrete time. ID leads the 2 subseries to different

periodic trajectories [2,7]. Outputs of each subseries (α and

β) are shown in Table 1, where an output xi(t) is replaced

with αi(t) or βi(t) as to the corresponding subseries, and β-

subseries are shown in a gray cell (Table 1).

Table 1: Outputs of Neuron as to Each Subseries. a)

Time N1 N2 N3 N0

t-1 β1(t-1) α2(t-1) β3(t-1) α0(t-1)

t α1(t) β2(t) α3(t) β0(t)

t+1 β1(t+1) α2(t+1) β3(t+1) α0(t+1)

t+2 α1(t+2) β2(t+2) α3(t+2) β0(t+2)

t+3 β1(t+3) α2(t+3) β3(t+3) α0(t+3)

a) The output xi(t) in Equation 1 is replaced with αi(t) or βi(t) as to

the corresponding subseries. 2 subseries (α and β) don't mix with

each other.

N2
x2

x3

x1

x0

x1

I I N1

N3

N0

ORCID iDs First Author: 0000-0002-2255-6937,

Second Author: 0000-0002-3189-3265

– 5 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

Figure 2: Activation Function f (APLF3).
A (-31.0001, -31.001), B (-7.9811, -8.29999), C (0.0001,

0.500012), D (7.981101, 8.6901), E (31.0002, 31.00999).

2.2. New Type Activation Functions for CRNN

A bottleneck process of the CRNN program in GPU is

APLF3 because it involves conditional branches. While

the slope of APLF3 is almost 1, that is, df/du = 0.9862 in

(A, B), 1.1026 in (B, C), 1.0262 in (C, D), 0.9696 in (D, E),

it may be regarded as random number addition. APLF3

may be replaced by the function in Equation 2, where pr is

a PRN.

𝑓(𝑢) = 𝑢 + 𝑝𝑟 (2)

Conditional sentences (e.g., if statements) in the program

of CRNN may be replaced by the addition of a PRN, which

is extracted from an output of CRNN by using the

extraction method shown in Figure 3 [10]. Let us represent

the extraction method of PRN by function g(). Equations

1 and 2 are rewritten as Equations 3-6 using subseries,

which shows only the iteration for α-subseries, and those

for β-subseries are essentially the same except for a time

lag by a unit time. Let us call the iteration described as

Equations 3-6 Method-3.

𝛼1(𝑡) = 𝑤01𝛼0(𝑡 − 1) + 𝑔(𝛼2 (𝑡 − 1)) + 𝐼 (3)

𝛼2(𝑡 + 1) = 𝑤12𝛼1(𝑡) + 𝑔(𝛼1(𝑡)) (4)

𝛼3(𝑡) = 𝑤23𝛼2(𝑡 − 1) + 𝑔(𝛼0(𝑡 − 1)) (5)

𝛼0(𝑡 + 1) = 𝑤30𝛼3(𝑡) + w10α1(t) + 𝑔(𝛼3(𝑡)) + 𝐼 (6)

CRNN Output (Q5.26)

Figure 3: PRN Extraction Method from CRNN Output.

Finally, PRN series are extracted from the subseries by

using the method shown in Figure 3, again.

In the preceding work, the values of another subseries

were used as the additional PRN (Equations 7-10, Method-

2 in ref. [10]), the periods of the obtained PRN series,

however, were too long to compute exact values. Therefore,

the security of the PRN series could not be evaluated

quantitatively based on the periods as shown in Figure 4. It

is a fatal disadvantage for security applications.

𝛼1(𝑡) = 𝑤01𝛼0(𝑡 − 1) + 𝑔(𝛽3 (𝑡 − 1)) + 𝐼 (7)

𝛼2(𝑡 + 1) = 𝑤12𝛼1(𝑡) + 𝑔(𝛽0(𝑡)) (8)

𝛼3(𝑡) = 𝑤23𝛼2(𝑡 − 1) + 𝑔(𝛽1(𝑡 − 1)) (9)

𝛼0(𝑡 + 1) = 𝑤30𝛼3(𝑡) + w10α1(t) + 𝑔(𝛽2(𝑡)) + 𝐼 (10)

To reduce the period of the obtained PRN series, the

additional pseudo-random number pr is generated from the

same α-subseries in Method-3 instead of the β-subseries.

 An absolute value of pr may be important because a

larger pr increases the probability of overflow. As for the

piecewise functions of APLF3, the intercepts of the vertical

axis are more than -0.43 and less than 0.96, however, the

smaller pr (experimentally more than 4-bit-right-shifted pr)

gave an unacceptable result, that is, the fail rate of

"Frequency Test within a Block" [8-9] raised remarkably.

The most suitable selection of pr in Equation 2 will be a

problem in the future. The method shown in Figure 3 has

been better so far.

2.3. Property of PRN Series from CRNN by using New

Type Activation Function

 The property of obtained PRN series by using the

proposed method in this work is confirmed with "A

Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications"

(NIST SP800-22 test suite) [8-9]. The representative

results are shown in Table 2 for "Proportion of Sequences

Passing a Test" and in Table 3 for "Uniform Distribution of

P-values Test".

Sign

bit
1 b 4 b . 26 b

Pseudo-Random Number (30 b)

Table 2: Result of "Proportion of Sequences Passing a

Test" on the NIST SP800-22 Test Suite.

reference FR FB CS RU LR RK OT

Method-3 0.2 0.1 0.1 0.3 0.3 0.0 0.8

Method-2 [10] 0.1 0.2 0.2 0.3 0.1 0.1 0.8

Table 3: Result of "Uniform Distribution of P-values

Test" on NIST SP800-22 Test Suite.

reference FR FB CS RU LR RK OT

Method-3 0.1 0.0 0.0 0.0 0.0 0.1 0.0

Method-2 [10] 0.0 0.0 0.1 0.0 0.1 0.0 0.1

x

x = f (u) E

C

D

u 0
B

A

– 6 –

The tests are repeated by 1000 times and obtained fail

rates (%) are listed in the Tables. Abbreviations of test

names in the tables are as follows: FR; Frequency Test, FB;

Frequency Test within a Block, CS; Cumulative Sums Test,

RU; Runs Test, LR; Test for the Longest Run of Ones in a

Block, RK; Binary Matrix Rank Test, OT; Overlapping

Template Matching Test.

2.4. Rate of PRNG by GPU (NVIDIA A100)

The modified CRNN has been implemented with CUDA

11.6 on a PC mounted with a GPU (NVIDIA A100). The

result of the PRN generation rate is shown in Table 4 with

the result in ref. [2] for comparison.

The rate of PRNG with the previous APLF3 has been

accelerated by the latest GPU and CUDA from 2.85 Tb/s to

4.76 Tb/s (Table 4). Moreover, using the new type of

activation function in Method-3, the rate become more than

10 times faster and reached 10 Tb/s (1013 b/s) order of

magnitude. The result with Method-2 is also shown in

Table 4.

The number of threads (the number of CRNNs) is

optimized to realize the maximum rate. As for the results

of Method-3 in Table 4, the number of threads is 1.67×107

(the exact value is 16777216). Therefore, 2×1.67×107

subseries of the modified CRNN with different parameters

work in parallel on A100. The whole period of CRNNs (P)

can be defined as a period of a high-dimensional vector that

consists of PRN series as elements [2]. The whole period

of CRNNs is estimated in the next section.

Table 4: Maximum Rate of PRNG.

Activation

Function a)

Number of

Threads b)

Rate c)

 / Tb s-1

GPU d) CUDA

Version

APLF1 6.61×107 1.78 e) P100 8.0

APLF3 6.61×107 2.85 e) P100 8.0

APLF3 1.63×104 4.76 A100 11.6

Method-3 1.67×107 56.78 A100 11.6

Method-2 1.67×107 57.62 A100 11.6

a) Types of activation functions.

b) The number of threads at the maximum rate of PRN generation.

c) The maximum rate of PRN generation in Tb s-1 (= 1012 b s-1).

d) The product name of the NVIDIA GPU.

e) Data in ref. [2].

2.5. Estimation of Whole Period based on the Periods of

PRN Series of CRNNs

 The computer-generated chaotic time series is eventually

periodic by the computation with finite precision within our

knowledge. The computer-generated chaotic time series

also stays in a transient trajectory before entering a periodic

trajectory [4,5,7]. Time series staying a transient trajectory

are useful as well as time series staying a periodic trajectory.

In this study, however, the time in a transient trajectory is

omitted simply for computing a period of time series.

 The computed periods of the 10000 PRN series from

CRNNs were obtained within the range 7.0×105 - 2.3×1010.

The 10000 PRN series consists of 5000 α-subseries and β-

subseries. The whole period is estimated with L.C.M.

(Least Common Multiple) of periods of each PRN series.

As the transient trajectory is smaller than 4×1010, after t =

4×1010 a period of the PRN series can be calculated without

the influence of transient trajectories. The L.C.M. of the

periods of the PRN series has been calculated precisely

with a BigInteger class of Java language [2,12]. The L.C.M

of the 10000 PRN series has been calculated step-by-step

(Figure 4). Figure 4 shows the relationship between the

calculated log P (i.e., the digit of the whole period of the

PRN series) and the number of PRN series with the power

approximation curve. The digit of the whole period of the

10000 PRN series is log P = 54991 (i.e., P ≈ 1054991); it is

large enough for security applications in real life. The

approximation curve shows the same tendency as ref. [2];

log P ≈ 9.85n0.9263.

The whole period corresponding to Method-3 in Table 4

is estimated by using the approximation curve. The digit

of the whole period of the 33554432 PRN series is

estimated as log P ≈ 1.06 × 108, that is, the whole period is

estimated at P ≈ 10100000000. It is huge for today's security

applications.

According to the IBM road map of practical quantum

computing announced on May 10th, 2022, IBM's 2025 goal

is a 4,000+ qubit processor built with multiple clusters of

modularly scaled processors [13]. It suggests that the

quantum computer system is expected to compute 24000 (≈

101204) operations at once until 2025, therefore, the huge

period in this work may be useful in the future.

Figure 4: The digit of the whole period of CRNNs (log P)

and the number of PRN series.

log P = 10.46n0.931

R² = 0.9999

0

10000

20000

30000

40000

50000

60000

0 2000 4000 6000 8000 10000

lo
g
 P

Number of PRN Series

– 7 –

The parameters of the power approximation are shown

in Table 5, for not only mixed subseries (α and β) but also

for each subseries (α or β).

3. Conclusion

The novel iteration method with the modified activation

function has been proposed to implement the secure and

fast random number generator.

The modified activation function (Method-3) has

accelerated the pseudo-random-number generation to 56.8

Tb/s by using NVIDIA GPU (A100) and CUDA 11.6. The

CUDA context of the pseudo-random number generator

(PRNG) has consisted of 1.67×107 threads (1.67×107

CRNNs and 3.34×107 subseries). The whole period of the

PRNG is estimated at P ≈ 10100000000 (log P ≈ 1.06 × 108)

by the approximation curve based on the L.C.M. of the

10000 PRN series.

The rate of the generation with modified activation

function (Method-2) in our precedent report also has been

measured in this work as a faster rate, 57.6 Tb/s.

4. Future Work

Ultra-high-speed PRNG has successfully been

implemented by the new activation function and the latest

GPU, NVIDIA A100, which is equipped with 432 Tensor

Cores. Although the Tensor Cores accelerate matrix

operation, in this work the Tensor Cores have hardly been

used so far. Making the best use of A100 is the most

important aim in the future, and the key technology may be

an effective and practical use of the Tensor Cores, and

probably effective data migration between host and device

memories.

Method-2 and Method-3 are just examples of a new type

of activation function, therefore the optimization is still

underway; for better results for the NIST SP800-22 test,

faster PRNG, and also predictability of the PRN series.

In the future, the proposed method will be applied to the

secure CAN, the Autonomous GPU Accelerated system

(AGX), and the security system on GPUs, e.g., security

application for IoT edge devices because the appropriate

scale can be selected by using the equation in Figure 4.

Acknowledgments

Part of the experimental results in this research was

obtained using supercomputing resources at Cyberscience

Center, Tohoku University. Special thanks to the staff

members of Iwate University Super-Computing and

Information Sciences Center.

References

[1] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and

L. Kilmartin, "Intra-vehicle networks: a review," IEEE Trans.

Intell. Transport. Syst., vol. 16, no. 2, pp. 534-545, 2015.

[2] H. Yoshida, Y. Akatsuka and T. Murakami, "Implementation

of High-Performance Pseudo-Random Number Generator by

Chaos Neural Networks using Fix-Point Arithmetic with

Perturbation," Proceedings of Papers, NOLTA 2018, pp46-49,

2018.

[3] H. Yoshida, H. Fukuchi and T. Murakami, "Implementation

of High-Speed Pseudo-Random-Number Generator with Chaotic

and Random Neural Networks," Proceedings of Papers, HICSS53

2020, pp.6418-6425, 2020.

[4] H. Yoshida and T. Murakami, "Non-Attractive Periodic

Trajectory Formation Mechanism on Random and Chaotic Time

Series," Knowledge Innovation Through Intelli-gent Software

Methodologies, Tools and Techniques, H. Fujita et al. (Eds.), IOS

Press, 327, pp.197-208, 2020.

[5] H. Yoshida and T. Murakami, "Non-Attractive Periodic

Trajectory Formation Mechanism on Random and Chaotic Time

Series PART II," Proceedings of Papers, NOLTA 2020, pp.25-28,

2020.

[6] Z. Liu, T. Murakami, S. Kawamura, and H. Yoshida, "Fast

Stream Cipher based Chaos Neural Network for Data Security in

CAN Bus," Advances in Science, Technology and Engineering

Systems Journal, 5:5, pp.63-68, 2020.

[7] H. Yoshida, Y. Kon, and T. Murakami, "Chaos Neural

Network for Ultra-Long Period Pseudo-Random Number

Generator," Proceedings of Papers, ITISE 2017, vol.1, pp.102-

113, 2017.

[8] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,

M. Levenson, M. Vangel, D. Banks, A. Heckert, and J. Vo. S.

Dray, "A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications, NIST

SP800-22 rev.1a, Revised: July 2015 (sts-2.1.1)," Lawrence E.

Bassham III, 2015.

[9] H. Yoshida, T. Murakami, and S. Kawamura, "Study on

Testing for Randomness of Pseudo-Random Number Sequence

with NIST SP800-22 rev. la," Technical Reports of IEICE,

vol.110, pp.13-18, 2012.

[10] H. Yoshida and T. Murakami, "Activation Functions

for Chaotic and Random Neural Networks," Proceeding of Papers,

JSST2022, pp.351-354, 2022.

[11] NVIDIA DEVELOPER, "NVIDIA CUDA ZONE",

 https://developer.nvidia.com/cuda-zone (accessed-2022-06-01).

[12] Amazon Web Service, "Amazon Corretto Documentation"

https://docs.aws.amazon.com/corretto/index.html (accessed-

2022-06-01).

[13] IBM, "IBM Unveils New Roadmap to Practical Quantum

Computing Era; Plans to Deliver 4,000+ Qubit System"

 https://newsroom.ibm.com/ (accessed-2022-06-01).

Table 5: Parameters of Power Approximation Curve. a)

Subseries A B R2

α 10.07 0.9351 0.9999

β 10.32 0.9338 0.9999

α and β 10.46 0.9310 0.9999

a) The parameters of the approximation curve: log P = A×nB.

– 8 –

