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Abstract– A novel iteration method with the modified 

activation function has been proposed to implement the 

secure and fast pseudo-random number generator (PRNG).  

The modified activation function has accelerated the 

pseudo-random-number (PRN) generation rate to 56.8 Tb/s 

by using NVIDIA GPU (A100).  The PRNG consists of 

1.67×107 Chaotic and Random Neural Networks (CRNNs), 

and the whole period of the PRN series is estimated at P ≈ 

10100000000 based on the L.C.M. of the 10000 PRN series.  

The result is expected to apply the information security of 

the Controller Area Network (CAN) and that of the 

Autonomous GPU Accelerated systems, especially 

intelligent vehicle systems.   

 

1. Introduction 

 

Recently, the information security of the Controller Area 

Network (CAN) has attracted considerable attention [1].   

We have reported the secure and fast cipher system by 

using the PRNG based on fixed-point arithmetic (Q5.26) 

[2- 5] and the application to the secure CAN [6]. 

NVIDIA has developed the Autonomous GPU 

Accelerated system (AGX), which is designed and built for 

all types of autonomous systems, including robotaxis.  The 

NVIDIA DRIVE Orin SoC is expected as the central 

computer for intelligent vehicles, which is the integrated 

GPU that is equipped with Ampere architecture CUDA 

cores and TensorCores.  The security system on GPUs is 

rapidly increasing in importance.   

This study aims to implement a faster PRNG by using an 

optimized algorithm for the GPU architecture, moreover, to 

implement a securer PRNG by extending the period of the 

PRN series, extremely.  The PRN series are expected as 

one-time random numbers for disposable use. 

 

2. Results and Discussion 

 

2.1. Basics of CRNN 

 

The network composed of 4 artificial neurons (N0-N3) in 

the discrete-time system has been used for the PRNG 

(Figure 1 and Equation 1) [2-5].  Ij is an external input of 

the jth neuron (j = 0,1,2,3).  An output of the jth neuron at 

time t+1 is defined as equation 1.  wij is a synaptic weight  

between the ith neuron and jth neuron (i = 0,1,2,3), xi (t) is 

an output from the ith neuron at time t and f is the 

asymmetric piecewise-linear-function (APLF3) (Figure 2).  

7-bit-rotate-left instruction is additionally executed before 

the iteration only for x1 and x2. 

The time series generated from CRNN can separate into 

2 independent subseries: the α subseries and the β subseries 

[2,7].  In other words, 2 independent subseries are 

simultaneously generated (Table 1).   

 
 

 

 

 

 

 

 

 

 

Figure 1: Chaotic and Random Neural Network (CRNN).  

    

 

𝑥𝑗(𝑡 + 1) =   𝑓(∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)

𝑛

𝑖=1

+ 𝐼 )                 (1) 

 

Computer-generated chaotic time series is eventually 

periodic by the calculation with finite precision within our 

knowledge.  A perturbation ID (a randomly decided small 

floating-point value) is added to an external input I at an 

odd discrete time.  ID leads the 2 subseries to different 

periodic trajectories [2,7].  Outputs of each subseries (α and 

β) are shown in Table 1, where an output xi(t) is replaced 

with αi(t) or βi(t) as to the corresponding subseries, and β-

subseries are shown in a gray cell (Table 1). 

 

Table 1: Outputs of Neuron as to Each Subseries. a) 

Time N1 N2 N3 N0 

t-1 β1(t-1) α2(t-1) β3(t-1) α0(t-1) 

t α1(t) β2(t) α3(t) β0(t) 

t+1 β1(t+1) α2(t+1) β3(t+1) α0(t+1) 

t+2 α1(t+2) β2(t+2) α3(t+2) β0(t+2) 

t+3 β1(t+3) α2(t+3) β3(t+3) α0(t+3) 

a) The output xi(t) in Equation 1 is replaced with αi(t) or βi(t) as to 

the corresponding subseries.  2 subseries (α and β) don't mix with 

each other.  
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Figure 2: Activation Function f (APLF3). 
A (-31.0001, -31.001), B (-7.9811, -8.29999), C (0.0001, 

0.500012), D (7.981101, 8.6901), E (31.0002, 31.00999).  

 

2.2. New Type Activation Functions for CRNN 

 

A bottleneck process of the CRNN program in GPU is 

APLF3 because it involves conditional branches.  While 

the slope of APLF3 is almost 1, that is, df/du = 0.9862 in 

(A, B), 1.1026 in (B, C), 1.0262 in (C, D), 0.9696 in (D, E), 

it may be regarded as random number addition.  APLF3 

may be replaced by the function in Equation 2, where pr is 

a PRN.  

    

𝑓(𝑢) =  𝑢 + 𝑝𝑟                                                                   (2) 
 

Conditional sentences (e.g., if statements) in the program 

of CRNN may be replaced by the addition of a PRN, which 

is extracted from an output of CRNN by using the 

extraction method shown in Figure 3 [10].  Let us represent 

the extraction method of PRN by function g( ).  Equations 

1 and 2 are rewritten as Equations 3-6 using subseries, 

which shows only the iteration for α-subseries, and those 

for β-subseries are essentially the same except for a time 

lag by a unit time.  Let us call the iteration described as 

Equations 3-6 Method-3. 

 

𝛼1(𝑡) = 𝑤01𝛼0(𝑡 − 1) + 𝑔(𝛼2 (𝑡 − 1)) + 𝐼                 (3) 

 

𝛼2(𝑡 + 1) = 𝑤12𝛼1(𝑡) + 𝑔(𝛼1(𝑡))                                 (4) 
 

𝛼3(𝑡) = 𝑤23𝛼2(𝑡 − 1) + 𝑔(𝛼0(𝑡 − 1))                         (5) 

 

𝛼0(𝑡 + 1) = 𝑤30𝛼3(𝑡) + w10α1(t) + 𝑔(𝛼3(𝑡)) + 𝐼   (6) 
 
 

CRNN Output (Q5.26) 

 

Figure 3: PRN Extraction Method from CRNN Output. 

Finally, PRN series are extracted from the subseries by 

using the method shown in Figure 3, again. 

In the preceding work, the values of another subseries 

were used as the additional PRN (Equations 7-10, Method-

2 in ref. [10]), the periods of the obtained PRN series, 

however, were too long to compute exact values.  Therefore, 

the security of the PRN series could not be evaluated 

quantitatively based on the periods as shown in Figure 4.  It 

is a fatal disadvantage for security applications. 

 

𝛼1(𝑡) = 𝑤01𝛼0(𝑡 − 1) + 𝑔(𝛽3 (𝑡 − 1)) + 𝐼         (7) 

 

𝛼2(𝑡 + 1) = 𝑤12𝛼1(𝑡) + 𝑔(𝛽0(𝑡))                                 (8) 
 

𝛼3(𝑡) = 𝑤23𝛼2(𝑡 − 1) + 𝑔(𝛽1(𝑡 − 1))                      (9) 

 

𝛼0(𝑡 + 1) = 𝑤30𝛼3(𝑡) + w10α1(t) + 𝑔(𝛽2(𝑡))  + 𝐼   (10) 
 

To reduce the period of the obtained PRN series, the 

additional pseudo-random number pr is generated from the 

same α-subseries in Method-3 instead of the β-subseries. 

  An absolute value of pr may be important because a 

larger pr increases the probability of overflow.  As for the 

piecewise functions of APLF3, the intercepts of the vertical 

axis are more than -0.43 and less than 0.96, however, the 

smaller pr (experimentally more than 4-bit-right-shifted pr) 

gave an unacceptable result, that is, the fail rate of 

"Frequency Test within a Block" [8-9] raised remarkably.  

The most suitable selection of pr in Equation 2 will be a 

problem in the future.  The method shown in Figure 3 has 

been better so far. 

   

2.3. Property of PRN Series from CRNN by using New 

Type Activation Function 

 

 The property of obtained PRN series by using the 

proposed method in this work is confirmed with "A 

Statistical Test Suite for Random and Pseudorandom 

Number Generators for Cryptographic Applications" 

(NIST SP800-22 test suite) [8-9].  The representative 

results are shown in Table 2 for "Proportion of Sequences 

Passing a Test" and in Table 3 for "Uniform Distribution of 

P-values Test".   

 

Sign 

bit 
1 b 4 b . 26 b 

 

 

   

Pseudo-Random Number (30 b) 

Table 2: Result of "Proportion of Sequences Passing a 

Test" on the NIST SP800-22 Test Suite. 

reference FR FB CS RU LR RK OT 

Method-3 0.2 0.1 0.1 0.3 0.3 0.0 0.8 

Method-2 [10] 0.1 0.2 0.2 0.3 0.1 0.1 0.8 

Table 3: Result of "Uniform Distribution of P-values 

Test" on NIST SP800-22 Test Suite. 

reference FR FB CS RU LR RK OT 

Method-3 0.1 0.0 0.0 0.0 0.0 0.1 0.0 

Method-2 [10] 0.0 0.0 0.1 0.0 0.1 0.0 0.1 
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The tests are repeated by 1000 times and obtained fail 

rates (%) are listed in the Tables.  Abbreviations of test 

names in the tables are as follows:  FR; Frequency Test, FB; 

Frequency Test within a Block, CS; Cumulative Sums Test, 

RU; Runs Test, LR; Test for the Longest Run of Ones in a 

Block, RK; Binary Matrix Rank Test, OT; Overlapping 

Template Matching Test. 

 

2.4. Rate of PRNG by GPU (NVIDIA A100) 

 

The modified CRNN has been implemented with CUDA 

11.6 on a PC mounted with a GPU (NVIDIA A100).  The 

result of the PRN generation rate is shown in Table 4 with 

the result in ref. [2] for comparison. 

The rate of PRNG with the previous APLF3 has been 

accelerated by the latest GPU and CUDA from 2.85 Tb/s to 

4.76 Tb/s (Table 4).  Moreover, using the new type of 

activation function in Method-3, the rate become more than 

10 times faster and reached 10 Tb/s (1013 b/s) order of 

magnitude.  The result with Method-2 is also shown in 

Table 4. 

The number of threads (the number of CRNNs) is 

optimized to realize the maximum rate.  As for the results 

of Method-3 in Table 4, the number of threads is 1.67×107 

(the exact value is 16777216).  Therefore, 2×1.67×107 

subseries of the modified CRNN with different parameters 

work in parallel on A100.  The whole period of CRNNs (P) 

can be defined as a period of a high-dimensional vector that 

consists of PRN series as elements [2].  The whole period 

of CRNNs is estimated in the next section. 

 

Table 4: Maximum Rate of PRNG. 

Activation 

Function a) 

Number of 

Threads b) 

Rate c)  

 / Tb s-1 

GPU d) CUDA 

Version 

APLF1 6.61×107 1.78 e) P100 8.0 

APLF3 6.61×107 2.85 e) P100 8.0 

APLF3 1.63×104  4.76  A100 11.6 

Method-3 1.67×107  56.78  A100 11.6 

Method-2 1.67×107 57.62  A100 11.6 

a) Types of activation functions. 

b) The number of threads at the maximum rate of PRN generation. 

c) The maximum rate of PRN generation in Tb s-1 (= 1012 b s-1). 

d) The product name of the NVIDIA GPU. 

e) Data in ref. [2]. 

 

2.5. Estimation of Whole Period based on the Periods of 

PRN Series of CRNNs 

 

  The computer-generated chaotic time series is eventually 

periodic by the computation with finite precision within our 

knowledge.  The computer-generated chaotic time series 

also stays in a transient trajectory before entering a periodic 

trajectory [4,5,7].  Time series staying a transient trajectory 

are useful as well as time series staying a periodic trajectory.  

In this study, however,  the time in a transient trajectory is 

omitted simply for computing a period of time series. 

  The computed periods of the 10000 PRN series from 

CRNNs were obtained within the range 7.0×105 - 2.3×1010.  

The 10000 PRN series consists of 5000 α-subseries and β-

subseries. The whole period is estimated with L.C.M. 

(Least Common Multiple) of periods of each PRN series.  

As the transient trajectory is smaller than 4×1010, after t = 

4×1010 a period of the PRN series can be calculated without 

the influence of transient trajectories.  The L.C.M. of the 

periods of the PRN series has been calculated precisely 

with a BigInteger class of Java language [2,12].  The L.C.M 

of the 10000 PRN series has been calculated step-by-step 

(Figure 4).  Figure 4 shows the relationship between the 

calculated log P (i.e., the digit of the whole period of the 

PRN series) and the number of PRN series with the power 

approximation curve.  The digit of the whole period of the 

10000 PRN series is log P = 54991 (i.e., P ≈ 1054991); it is 

large enough for security applications in real life.  The 

approximation curve shows the same tendency as ref. [2]; 

log P ≈ 9.85n0.9263. 

The whole period corresponding to Method-3 in Table 4 

is estimated by using the approximation curve.  The digit 

of the whole period of the 33554432 PRN series is 

estimated as log P ≈ 1.06 × 108, that is, the whole period is 

estimated at P ≈ 10100000000.   It is huge for today's security 

applications.    

According to the IBM road map of practical quantum 

computing announced on May 10th, 2022, IBM's 2025 goal 

is a 4,000+ qubit processor built with multiple clusters of 

modularly scaled processors [13].  It suggests that the 

quantum computer system is expected to compute 24000 (≈ 

101204) operations at once until 2025, therefore, the huge 

period in this work may be useful in the future. 

 

 
Figure 4: The digit of the whole period of CRNNs (log P) 

and the number of PRN series. 

 

log P = 10.46n0.931

R² = 0.9999

0

10000

20000

30000

40000

50000

60000

0 2000 4000 6000 8000 10000

lo
g
 P

Number of PRN Series 

– 7 –



   

The parameters of the power approximation are shown 

in Table 5, for not only mixed subseries (α and β) but also 

for each subseries (α or β). 

 

3. Conclusion  

 

The novel iteration method with the modified activation 

function has been proposed to implement the secure and 

fast random number generator. 

The modified activation function (Method-3) has 

accelerated the pseudo-random-number generation to 56.8 

Tb/s by using NVIDIA GPU (A100) and CUDA 11.6.  The 

CUDA context of the pseudo-random number generator 

(PRNG) has consisted of 1.67×107 threads (1.67×107 

CRNNs and 3.34×107 subseries).  The whole period of the 

PRNG is estimated at P ≈ 10100000000 (log P ≈ 1.06 × 108) 

by the approximation curve based on the L.C.M. of the 

10000 PRN series.  

The rate of the generation with modified activation 

function (Method-2) in our precedent report also has been 

measured in this work as a faster rate, 57.6 Tb/s.   

  

4. Future Work 

 

Ultra-high-speed PRNG has successfully been 

implemented by the new activation function and the latest 

GPU, NVIDIA A100, which is equipped with 432 Tensor 

Cores.  Although the Tensor Cores accelerate matrix 

operation, in this work the Tensor Cores have hardly been 

used so far.  Making the best use of A100 is the most 

important aim in the future, and the key technology may be 

an effective and practical use of the Tensor Cores, and 

probably effective data migration between host and device 

memories. 

Method-2 and Method-3 are just examples of a new type 

of activation function, therefore the optimization is still 

underway; for better results for the NIST SP800-22 test, 

faster PRNG, and also predictability of the PRN series. 

In the future, the proposed method will be applied to the 

secure CAN, the Autonomous GPU Accelerated system 

(AGX), and the security system on GPUs, e.g., security 

application for IoT edge devices because the appropriate 

scale can be selected by using the equation in Figure 4.  
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Table 5: Parameters of Power Approximation Curve. a) 

Subseries A B R2 

α 10.07 0.9351 0.9999 

β 10.32 0.9338 0.9999 

α and β 10.46 0.9310 0.9999 

a) The parameters of the approximation curve: log P = A×nB. 
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