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Abstract—In this paper, we propose a controller gen-
erating a desired limit cycle for a 2-dimensional discrete-
time nonlinear control system. First, we state some nota-
tions and our problem setting. Next, we derive a control
algorithm to solve the problem on limit cycles, and a modi-
fication of the algorithm is also shown. Then, we apply our
algorithms to a chaotic system, the Hénon Map, to show
the availability of the proposed method.

1. Introduction

The concept of limit cycles is quite important in various
research fields such as stable walking or gait of humanoid
robots in robot engineering, oscillator circuits in electronic
engineering, catalytic hypercycles in chemistry, circadian
rhythm in biology, boom-bust cycles in economics and so
on. Phenomenon of limit cycles is specific for nonlinear
systems, along with chaos and fractal, and it has been at-
tracted a lot of researcher’s interest. Therefore, researches
on limit cycles have been vigorously done from mathemat-
ical and engineering perspectives so far.

In control theory, a lot of researchers have focused on
synthesis problems of systems that generate limit cycles
[1]. For example, in recent work, synthesis methods of
nonlinear/hybrid systems whose solution trajectories con-
verge to desired limit cycles are proposed in [2, 3, 4], and
robust generation of oscillations for a class of nonlinear
systems is studied in [5, 6]. On the other hand, there are few
studies on design of only control inputs that realize a de-
sired limit cycle for a given nonlinear control system. Since
we design only control inputs to make the solution trajecto-
ries converge to the desired limit cycle, it seem to be quite
difficult to solve the above synthesis problem. In [7], we
have presented a control strategy based on the control Lya-
punov function approach, which generates a desired limit
cycle for 2-dimensional continuous-time nonlinear control
systems. However, such a research for discrete-time non-
linear control systems has not been done.

In this paper, we propose a controller design method that
generates desired limit cycles for 2-dimensional discrete-
time nonlinear control systems. We first give some termi-
nologies and state our problem. Next, two types of control
algorithms that generates a desired limit cycles for the sys-
tem are introduced. Then, we consider an application to a
discrete-time chaotic system, the Hénon Map, to show the
availability of the proposed control strategy.

2. Problem Setting

In this paper, we consider the following 2-dimensional
discrete-time nonlinear control system defined in an open
subset D ⊂ R2:

xk+1 = f (xk) + g(xk)uk, (1)

where k = 0, 1, 2, · · · ∈ Z is a time step, xk = [ x1
k x2

k ]T ∈ D
is a state variable, uk ∈ R is a control input and f , g : D→
T Q are smooth vector-valued functions defined in D.

We define a limit cycle function V : D→ R:

V(xk) := (xk − s)TP(xk − s) − r2, (2)

where P ∈ R2×2 is a symmetric and positive definite con-
stant matrix, s ∈ R2 is a constant vector and r > 0 is a con-
stant. It can be easily confirmed that the equation V(xk) = 0
determines a unique ellipse D0 in D. We design P, s and r in
(2) to make the ellipse the desired limit cycle. Note that D0

can be set by rotating and translating a ellipse whose center
is the origin, that is, P can be represented by a product of a
rotating matrix R and a diagonal matrix T :

P =
[

cos θ − sin θ
sin θ cos θ

]
︸                 ︷︷                 ︸

RT

[
T1 0
0 T2

]
︸        ︷︷        ︸

T

[
cos θ sin θ
− sin θ cos θ

]
︸                 ︷︷                 ︸

R

,

(3)
where θ is the rotating angle and T1, T2 > 0

Based on the problem setting above, we consider the fol-
lowing problem on limit cycle.

Problem 1: For the 2-dimensional discrete-time nonlinear
control system (1), find a control strategy such that D0 is
an unique stable limit cycle of a solution trajectory of (1)
from an initial state in D.

3. Limit Cycle Control

3.1. Algorithm

In this subsection, we derive a control algorithm, which
may be a solution of Problem 1. In order to achieve the
desired limit cycle, a solution trajectory of (1) needs to
converge to D0. In other words, we have to find a con-
trol input such that V(xk) converges to 0 as time goes by,
that is, V(xk)2 decreases as k increases. The following the-
orem gives us a necessary and sufficient condition on the
existence of such a control input.
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Theorem 1: For the 2-dimeinsional discrete-time nonlin-
ear control system (1), a control input uk that decreases the
value of V(xk)2 exists if and only if

Γ(xk) :=
b(xk)2

a(xk)
− c(xk) + |V(xk)| > 0,

a(xk) := g(xk)TPg(xk),

b(xk) := ( f (xk) − s)TPg(xk),

c(xk) := ( f (xk) − s)TP( f (xk) − s) − r2.

(4)

holds.

Since (4) is independent of k, so the domain such that
(4) is satisfied can be calculated in advance. We call such a
domain a limit cycle basin of attractor of (1) for V , and DV

denotes it. We have to set an initial state x0 and a desired
limit cycle D0 so that they are included in DV .

In order to generate a desired limit cycle for (1), a so-
lution trajectory from x0 always needs to be included in
DV . That is, we have to calculate a control input uk such
that xk+1 ∈ DV holds. Substituting (1) into Γ(xk+1) > 0,
we obtain an inequality with respect to uk. By finding a uk

satisfying the inequality and apply it to (1), we can make
xk+1 ∈ DV . The procedure above is summarized as the fol-
lowing algorithm.

Algorithm 1:

(Step 0) Decide an initial states x0 and a desired limit cycle
D0. Set k = 1.

(Step 1) Calculate uk such that Γ(xk+1) > 0 and apply it to
(1). Replace k with k + 1 and continue this step. If uk does
not exist or a terminal condition is satisfied, this algorithm
is finished.

3.2. Modified Algorithm

By using Algorithm 1, it can be guaranteed that a solu-
tion trajectory of (1) starting from an initial state x0 always
satisfies xk ∈ DV and converges to D0. However, it is ex-
pected that as it converges to D0, the range of available
control input gets smaller and the solution trajectory does
not behave a limit cycle. To overcome this problem, we
define a new domain:

Dε := { xk ∈ D | |V(xk)| < ε }. (5)

If xk < Dϵ , we adopt Step 1 of Algorithm 1. If xk ∈ Dϵ , we
calculate a control input uk such that only xk+1 ∈ Dϵ holds,
that is, we do not consider convergence of the solution tra-
jectory to D0 and not use the condition Γ(xk+1) > 0. We
sum up a modification of Algorithm 1 as follows.

Algorithm 2:

(Step 0) Decide an initial states x0 and a desired limit cycle
D0. Set k = 1.

(Step 1) Calculate uk such that Γ(xk+1) > 0, and apply
it to (1). Replace k with k + 1 and continue this step. If
xk+1 ∈ Dϵ holds, then go to Step 2 with replacing k+1 with

l. If uk does not exist or a terminal condition is satisfied,
this algorithm is finished.

(Step 2) Calculate ul such that xl+1 ∈ Dϵ , and apply it to
(1). Replace l with l + 1 and continue this step. If ul does
not exist or a terminal condition is satisfied, this algorithm
is finished.

4. Application to Hénon Map

4.1. Probelm Setting

In this section, we consider an application of the limit
cycle control method shown in the previous section to a
discrete-time chaotic system called the Hénon Map. The
autonomous Hénon Map is given by[

x1
k+1

x2
k+1

]
=

[
1 − 1.4(x1

k)2 + x2
k

0.3x1
k

]
, (6)

where xk = [ x1
k x2

k ]T ∈ R2 is a state variable. The solution
trajectory from the initial state x0 = [ 0.5 0.1 ]T is depicted
in Fig. 1. This system shows some typical properties of
chaotic systems such as strange attractor, fractal structure,
sensitive dependence on initial conditions and so on. We
add a control input uk ∈ R to the second system of (6) as
follows:[

x1
k+1

x2
k+1

]
=

[
1 − 1.4(x1

k)2 + x2
k

0.3x1
k

]
+

[
0
1

]
uk. (7)

Note that the control input cannot vanish the nonlinear term
in the first system of (6), and so we do not consider an easy
situation.
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Fig. 1 : Hénon Map

Now, we set parameters of the limit cycle function. For
parameters:

θ = 45◦, T1 = 1, T2 =
√

2,

s = [ 0 0 ]T, r = 0.5,
(8)
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D0 (the blue ellipse) and DV (the green area) are illustrated
in Fig. 2. From this figure, it can be confirmed that D0 is
not included in DV , and hence these parameters cannot be
used. Next, for other parameters:

θ = −60◦,T1 = 1, T2 =
√

2,

s = [ 0 − 1 ]T, r = 0.3,
(9)

D0 and DV are illustrated in Fig. 3. From this figure, we
can see that D0 is included in DV , and hence we adopt these
parameters (9).
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Fig. 2 : Limit Cycle and Basin of Attraction for (8)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

Fig. 3 : Limit Cycle and Basin of Attraction for (9)

4.2. Numerical Simulation

This subsection gives numerical simulations to check our
algorithms in Section 3. First, we apply Algorithm 1 to (7)

and (9). We set the initial state as x0 = [ 0.5 − 0.3 ]T.
Using Algorithm 1, we have the simulation result shown
in Fig. 4. Fig. 4 illustrates the solution trajectory on the
xy-plane. From this figure, it can be confirmed that the so-
lution trajectory converges to D0 by Algorithm 1. However,
it distributes to only some parts of D0.
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Fig. 4 : Solution Trajectory in xy-Plane (Algorithm 1)

Next, we use Algorithm 2 for (7) and (9). In Algorithm 2
We set ϵ = 0.02 in (5). Fig. 5 shows the solution trajectory
on the xy-plane. From this figure, we can confirm that the
solution trajectory first converges to D0 by Step 1 of Algo-
rithm 2, then after the solution trajectory is included in Dϵ ,
it distributes to most parts of D0. Compared to Algorithm
1, Algorithm 2 shows a better performance of generating a
limit cycle for the Hénon Map.
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Fig. 5 : Solution Trajectory in xy-Plane (Algorithm 2)

- 88 -



5. Conclusion

In this paper, we have proposed an algorithm that gen-
erates a desired limit cycle for a 2-dimensional discrete-
time nonlinear control system, and shown its modification.
Then, we have applied the algorithms to a chaotic exam-
ple, the Hénon Map, and indicated the effectiveness of our
methods by numerical simulations.

Our future work is as follows: an extension of the pro-
posed algorithms to multi-dimensional systems and appli-
cations to other systems.
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[6] F. Gómez-Estern, A. Barreiro, J. Aracil and F.
Gordillo “Robust Generation of Almost-periodic Os-
cillations in a Class of Nonlinear systems,” Int. J. Ro-
bust Nonlinear Control, vol.16, no.18, pp.863–890,
2006.

[7] T. Kai and R. Masuda, “Controller Design for 2-
Dimensional Nonlinear Control Systems Generating
Limit Cycles and Its Application to Spacerobots,” in
Proc. of NOLTA 2008, Budapest, Hungary, pp.396-
399, 2008.

- 89 -


	Navigation page
	Session at a glance
	Technical program

