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Abstract—In this paper, we introduce a new
matlab-based program for numerical analysis of
switched dynamical systems. The program provides
a graphical user interface (gui) that allows the users
to enter the system description in terms of the sym-
bolic ordinary differential equations for each subsys-
tem, along with the information about the switching
surfaces. Using this program, one can locate the pe-
riodic orbits (stable as well as unstable) and can cal-
culate their eigenvalues. The algorithm calculates the
fundamental solution matrix using exponential matri-
ces for evolution within the subsystems, and the salta-
tion matrices for transition across subsystems through
switching conditions. The tool is verified using several
hybrid dynamical systems.

1. Introduction

Brute-force simulation of the complex Filippov-type
hybrid dynamical systems can be done by many avail-
able softwares (for example simulink). But a com-
putational tool for stability and bifurcation analysis
of such systems provides distinct advantage over such
brute-force simulation. Stability and bifurcation anal-
ysis offers explanation of the change in behavior which
is not possible by simple system simulation.

Traditionally, collocation-based algorithms like
auto are used for this purpose. However, in the
softwares like auto (and specialized drivers, such as

slidecont [1], homcont [2], tc-hat (T̂C) [3]), and
matcont [4] (in matlab environment), the entire
event order has to be predescribed. The auto-based
collocation method also has the limitation on problem
size: For example in tc-hat (T̂C), if a hybrid periodic
trajectory corresponding to an N dimensional system
has S segments, then NS has to be less than 100. An
important limitation of the collocation method is that
it requires all the segments be equally meshed irre-
spective of their length, i.e., even very small segments
(almost zero length) have to have the same number
of mesh points as the largest segment in the periodic
trajectory. This limitation places constraints on the
format of the initial solution used for continuation.

Kowalczyk and Piiroinen also developed an algo-
rithm [5] based on fundamental solution matrix to an-

alyze sliding bifurcations of Filippov systems. Though
the algorithm is capable of handling high dimensional
systems with a large number of subsystems, the system
analyzed in [5] has low dimension and less number of
subsystems. Since the program was not openly avail-
able, it was not possible for us to check its applicability
in the complex systems being handled in this paper.

Ma et al. developed a method [6], which locates the
periodic orbit by the Newton-Raphson method, and
in the process of convergence, obtains the Jacobian
for calculating the Floquet multipliers. However, this
method also has the limitation that the orbit should
contain a small number of switchings, because in its
Newton-Raphson search algorithm the size of the Ja-
cobian matrix depends on that number.

In the present work, we present a software for detec-
tion of periodic orbits (stable and unstable). It uses
the shooting method to detect the periodic orbits, and
the Jacobian matrix needed for the algorithm is cal-
culated from the fundamental solution matrix for one
period of the trajectory starting from the initial guess.
In each step the point is updated as well as the corre-
sponding Jacobian matrix. Thus, when the algorithm
converges, it detects the fixed point as well as its eigen-
values.

2. The Shooting Method

Suppose a hybrid dynamical system is comprised of
m subsystems M1, M2, M3 · · ·Mm, and the solution
flow is described as

x 1 = φ1(τ1, τ0,x 0), for x ∈M1 : ẋ =f 1=A1x+B1

...

xm = φm(pT, τm−1,xm−1),

for x ∈Mm : ẋ =f m=Amx+Bm

Starting from (x0, τ0), the solution flow crosses the
switching surfaces at time instants τ1, τ2 · · · , τm−1 be-
fore it reaches the state xm at time pT . Then the
Newton-Raphson search rule for locating the period-
p fixed point can be formulated in the following way.
Suppose an initial guess for the fixed point is x 0. Then
the next step in the Newton-Raphson procedure is
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Figure 1: Screenshots of the Matlab gui for implementation of the algorithm.

given by

x ′
0 = x 0 −

(
∂xm

∂x 0
− IN

)−1

(xm − x 0)

where IN is an N -dimensional identity matrix. This
requires the Jacobian for the fundamental solution ma-
trix which is calculated as

∂xm

∂x 0
= Sm

∂xm

∂xm−1
Sm−1

∂xm−1

∂xm−2
Sm−2 · · ·

∂x 2

∂x 1
S1

∂x 1

∂x 0

If the system is piecewise linear, the state transition
matrices for the flow across each subsystem are noth-
ing but the exponential matrices

∂x 1

∂x 0
= eA1(τ1−τ0),

∂x 2

∂x 1
= eA2(τ2−τ1) · · ·

It can be evaluated using matlab’s expm function
which is ten-term Taylor’s series approximation. For
piecewise nonlinear subsystem (e.g., Alpazur oscilla-
tor) the method given in [7] has been used.
The first saltation matrix (or the state transition ma-
trix for the passage across the first switching condi-
tion) is given by

S1 = IN +
(f 2 − f 1)n

⊤
1

n⊤
1 f 1 +

∂h1

∂t |t=τ1

.

Here n1 is the normal vector to the switching surface
h1(t,x ) = 0, and n⊤

1 is its transpose. The saltation
matrices for the transitions between the other subsys-
tems are obtained in a similar way. Thus once the
switching time instants and the flow equations in each
subsystem are known, the fundamental solution ma-
trix can be obtained.

3. Program Architecture and Implementation

• Graphical user interface (gui): matlab provides
a mechanism to generate gui by using guide (the

standard tool within matlab). It allows the end
users to use the program with minimal knowledge
and input. Using this functionality, we have cre-
ated a gui for our program (shown in Figure 1),
in which some windows are for user interaction—
typically input acquisition, parameter tuning and
option selection tasks. Others are windows to dis-
play graphical output.

• Main Function: It provides the basic simula-
tion routine steady-state and stability analysis as
shown in Figure 2. The parameters, the initial
subsystem, the initial values of the states and
time (by default zero), the final time are given
as input. For nonautonomous time-periodic sys-
tem the final time is a fixed value but in case of
autonomous system the time period is detected
after steady state analysis. Using this informa-
tion, it calculates the trajectory for a time period
and on that basis it computes the state transition
matrices across the subsystems and the saltation
matrices. On that basis it calculates the Jaco-
bian, and takes a Newton-Raphson step. This
is repeated until it converges. Thus this routine
calculates the fixed point and eigenvalues. If the
parameters are changed, this algorithm can follow
the periodic orbit by a continuation method.

• Subfunction for each subsystem: It receives in-
put (state and time) from the main function and

GUI

Main Function

Subfunction
for each subsystem

User Input

Result

Figure 2: Structure of the program inside the gui.
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computes a set of differential equations. In each
subsystem there are some switching conditions in-
dicating transitions to other subsystems. When
a switching condition is satisfied the integration
stops, and the time instant and the state vector
at that instant are stored and used as the starting
value for the next subsystem. The computational
work is performed by the integrators, which are
the standard matlab ode [8] solvers with built-
in event detection routines. The solution is sent
back to main function for graphical representa-
tion.

• The necessary results are shown graphically and
stored in an appropriate format for the further
use (i.e., if in a parameter range more than one
solution exists, the final bifurcation diagram will
be drawn by superimposition of all the solutions).

4. User Actions

For the user, the first job is to introduce a new sys-
tem by giving input to the edit fields and click ‘Save
System’ or load an existing one by clicking ‘Load Sys-
tem’ as shown in Figure 1. Filling the fields is straight-
forward since the matlab syntax is used. There are
six mandatory fields of interest, namely, System Info,
Parameters, Subsystems, Bifurcation Parameter, Ini-
tial Conditions, and ode Solver Parameters. Once
the data are given in the appropriate fields, the user
clicks the ‘Run’ or ‘Compute’ pushbutton in Results
depending on the steady-state or stability analysis. In
stability analysis ‘Fixed point’, ‘Eigenvalues’, ‘Subsys-
tem sequence’, and ‘Bifurcation type’ will be displayed
by clicking the radio buttons. The program stops if the
event detection routine does not work properly. One
can change the ‘ode Solver Parameters’ to influence
the event detection routine. Graphical representation
of the results is also possible.

5. Some Illustrative Examples

Many switched dynamical systems were taken from
[5, 7, 9] and were tested by this newly developed tool.
Here, two systems are chosen to show the applicability
of the proposed tool.

5.1. Buck converter with current-mode control

A current controlled dc-dc buck converter is taken
as an example [10] as shown in Figure 3. In this con-
verter, the switch (S) turns off when the inductor cur-
rent iL reaches a pre-specified reference value Iref . It
turns on at the arrival of the next pulse from a free-
running clock. If a clock pulse arrives while the switch
is on, it is ignored.
From “hybrid system” point of view the system can
be modeled as

dx

dt
=

{
M1 : A1x +B1 S is ON

M2 : A2x +B2 S is OFF

+
−

L
C RD

S

Vs

Q

R S+
- TsD Flip Flop

Clock
Iref

iL

+

-
vC

Figure 3: Circuit diagram of a buck converter with
current mode control. The parameter values are: L=
0.62 mH, C = 1 mF, R = 10 Ω, fs = 1/Ts = 30 kHz,
Iref =1 A.

where, x =[ iL vC ]⊤=[ x1 x2 ]
⊤, and the coefficient

matrices are

A1=A2=

[
0 − 1

L
1
C − 1

RC

]
, B1=

[
Vs

L
0

]
, B2=

[
0
0

]
.

The first and second subsystems are denoted by M1

and M2 respectively. The switching surfaces are given
by h1 : x1 − Iref =0, and h2 : t mod Ts=0.

(a) (b)

Figure 4: Bifurcation diagrams with Vs as varying pa-
rameter (a) brute-force (only stable attractors), (b)
path-following (stable and unstable periodic orbits).

After giving the inputs to the tool, the usual ap-
proach to analyze the dynamics of the system is often
to make a parameter sweep and to create a bifurca-
tion diagram by direct numerical simulation (DNS).
By choosing the input voltage Vs as the bifurcation
parameter, with the variation (decreasing value) of it a
bifurcation diagram as shown in Figure 4(a) has been
obtained which shows the stable attractors. A path
following bifurcation diagram (using the combination
of shooting method with Newton-Raphson and contin-
uation algorithm) is also drawn which shows the stable
and the unstable periodic orbits (Figure 4(b)) to ex-
plain the underlying behavior more accurately. Both
the bifurcation diagrams have been drawn by the de-
veloped software.

All the bifurcation points and their types are iden-
tified by monitoring the eigenvalues of the Jacobian
matrix of the fixed-point as shown in Table 1.

5.2. Load resonant converter with fixed fre-
quency control

A phase-shift modulated non-isolated series-parallel
load resonant dc-dc converter [11] is considered to il-
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Table 1: Eigenvalues of the fixed point with variation of input voltage Vs.

Vs Periodic orbit Subsystem sequence Fixed point Eigenvalues Type

20.00 stable period-1 [1-2] [ 0.7359 8.6792 ] −0.7668, 0.9966
17.631 stable period-1 [1-2] [ 0.763015 8.81507 ] −0.9999, 0.9967
17.630 unstable period-1 [1-2] [ 0.763028 8.81514 ] −1.0000, 0.9967 smooth

17.630 stable period-2 [1-2 – 1-2] [ 0.7604 8.8150 ] 0.9999, 0.9935
15.763 stable period-2 [1-2 – 1-2] [ 0.5763 7.8815 ] 0.9931± 0.0842j (≃0.9967)
15.762 unstable period-2 [1 – 1-2] [ 0.5762 7.8811 ] −1.0000, 0.9934 nonsmooth

15.762 unstable period-4 [1-2 – 1-2 – 1 – 1-2] [ 0.5762 7.8810 ] −1.0007, 0.9868 nonsmooth

Figure 5: Bifurcation diagram with input voltage as
varying parameter. The orbits in black color are drawn
by brute-force simulation. The red and blue colors
indicate unstable period-1 and unstable period-5 orbit
respectively.

lustrate the ability of this algorithm to work with sys-
tems with a high degree of complexity. In this system,
a five-dimensional state space is divided into nine sub-
systems by four switching surfaces. The bifurcation
diagram (Figure 5) shows that a Neimark-Sacker and
saddle-node bifurcations have occurred at Vs=19.83 V
and Vs=21.14 V respectively. A mode-locked period-
5 orbit after second bifurcation consists of 32 subsys-
tems, which also includes sliding segments.

6. Conclusion

This paper focuses on the numerical analysis of Fil-
ippov type complex hybrid dynamical systems. In this
work, a new general purpose Matlab-based program
for the stability analysis of any hybrid dynamical sys-
tem is introduced. Armed with an appropriate gui,
this tool is aimed at providing end-users with a pow-
erful computer tool to perform such analysis. It is
expected to be useful in carrying out a number of com-
putations (fixed points, their stability, bifurcation dia-
gram, phase space) in an efficient and simple way. This
tool has no bar on problem size because each switching
is considered separately by saltation matrices.
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