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Abstract—This paper considers the stabilization prob-
lem of the cart-pendulum from the view point of discrete
mechanics. First, we show the discrete-time model of the
cart-pendulum by using discrete mechanics. Next, we de-
rive a stabilization control method for the continuous-time
cart-pendulum based on discrete mechanics, and then nu-
merical simulations are shown. Finally, we apply the pro-
posed method to the actual cart-pendulum to show the va-
lidity of our method.

1. Introduction

In recent years, Discrete mechanics has been focused on
and attracted a lot of attention as a new discretizing tech-
nique for mechanical systems [1, 2, 3]. It is known that dis-
crete mechanics has some interesting properties: (i) it can
describe energies for conservative/dissipative systems with
less errors, (ii) some laws of physics such as Noether’s the-
orem are satisfied. (iii) simulations can be performed for
large sampling times. Therefore, we can expect that dis-
crete mechanics is available for designing controllers with
a high affinity for computers. However, there exist few re-
searches on control of mechanical systems via discrete me-
chanics [4, 5, 8, 9].

In [9], we have proposed a control strategy for the
continuous-time cart-pendulum with friction, and a trans-
formation method to zero-order hold inputs. However, any
experiments by using discrete mechanics have not been
done so far, and we have a question about whether discrete
mechanics is available for control of actual mechanical sys-
tems. The purpose of this paper is to answer the question
above, and hence we apply a controller design technique by
discrete mechanics to the actual cart-pendulum as a simple
mechanical system.

This paper is organized as follows. In Section 2, we de-
rive the discrete model of the cart-pendulum by using dis-
crete mechanics. Next, Section 3 gives a stabilizing control
method for the discrete cart-pendulum based on discrete-
time optimal regulator theory, and a transformation method
from discrete-time inputs to zero-order hold inputs by dis-
crete mechanics is porposed. Simulations are also shown
to check the effectiveness of the proposed method. Finally,
in Section 6 we carry out some experiments of the actual
cart-pendulum to show the application potentiality of our
method.

2. Discrete Cart-Pendulum

In this section, we derive the discrete-time model of the
cart-pendulum as shown in Fig. 1 by discrete mechanics.
See [1, 3, 9] for details of discrete mechanics. Let θ ∈
S := (−π, π] be the angle of the pendulum and z ∈ R be
the position of the cart. We set parameters of the system
as follows: m : the mass of the pendulum, M : the mass
of the cart, l : the length of the pendulum, η, µ : friction
coefficients of the pendulum and the cart, respectively. The
Lagrangian of this system is given by

L =
1
2

ml2θ̇2 + mlθ̇ż cos θ +
1
2

(m + M)ż2 − mgl cos θ, (1)

and we then have the discrete Lagrangian with the discrete
variables shown in Fig. 1:

Ld =
m + M

2h
(zk+1 − zk)2 +

ml2

2h
(θk+1 − θk)2

+
ml
h

cos {(1 − α)θk + αθk+1}(zk+1 − zk)(θk+1 − θk)

− mglh cos {(1 − α)θk + αθk+1}.

(2)

Consequently, from (2), we derive the discrete Euler-
Lagrange equation of the cart-pendulum with friction as (3)
and (4).

Substituting θk−1 = θk = θk+1, zk−1 = zk = zk+1 and
uk = 0 into (3) and (4), we have sin θk = 0. Therefore,
the equilibria of the discrete cart-pendulum are (θk, zk) =
(0, ze), (π, ze), ∀ze ∈ R, that is, they correspond with
those of the usual cart-pendulum in the continuous set-
ting. Finally, we calculate the linear approximation system
that behaves around the equilibrium θk = 0. Considering
θk−1, θk, θk+1 ≈ 0 for (3) and (4), we obtain the linear ap-
proximation as (5) and (6).
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Fig. 1 : Cart-Pendulum System
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− ml(1 − α)(θk+1 − θk)(zk+1 − zk) sin {(1 − α)θk + αθk+1} − ml cos{(1 − α)θk + αθk+1}(zk+1 − zk) − ml2(θk+1 − θk)

+ mgl(1 − α)h2 sin{(1 − α)θk + αθk+1} + ml cos{(1 − α)θk−1 + αθk}(zk − zk−1) + ml2(θk − θk−1)

− mlα(θk − θk−1)(zk − zk−1) sin {(1 − α)θk−1 + αθk} + mglαh2 sin{(1 − α)θk−1 + αθk}
+ η{(1 − α)(θk+1 − θk) + α(θk − θk−1)} = 0

(3)

− (m + M)(zk+1 − zk) − ml(θk+1 − θk) cos {(1 − α)θk + αθk+1} + (m + M)(zk − zk−1)

+ ml(θk − θk−1) cos {(1 − α)θk + αθk−1} + µ{(1 − α)(zk+1 − zk) + α(zk − zk−1)} + huk = 0
(4)

− ml(zk+1 − zk) + mgl(1 − α)h2{(1 − α)θk + αθk+1} + ml(zk − zk−1) − ml2(θk+1 − θk) + ml2(θk − θk−1)

+ mglαh2{(1 − α)θk−1 + αθk} + η{(1 − α)(θk+1 − θk) + α(θk − θk−1)} = 0
(5)

− (m + M)(zk+1 − zk) − ml(θk+1 − θk) + ml(θk − θk−1) + (m + M)(zk − zk−1)

+ µ{(1 − α)(zk+1 − zk) + α(zk − zk−1)} + huk = 0
(6)

3. Controller Design base on Discrete Mechanics

3.1. Proposed Control Method

This subsection presents a stabilizing controller for the
continuous-time cart-pendulum based on discrete mechan-
ics. First, we sum up a stabilizing method for the discrete
cart-pendulum derive in [8, 9]. We set a state variable as
xk = [ x1

k x2
k x3

k x4
k ]T = [ θk−1 θk zk−1 zk ]T. From (5) and

(6), we obtain the discrete-time linear control system:

xk+1 = Axk + Buk, (7)

where A ∈ R4×4, B ∈ R4×1 are appropriate matrices. By
using the discrete-time optimal regulator theory for (7), we
can have a stabilizing controller in the form:

uk = Kxk (8)

where K = [ K1 K2 K3 K4 ]T ∈ R1×4 is a gain matrix. In
[9], we showed that the control method can be stabilize the
discrete cart-pendulum at not only a small sampling time
but also a larger one.

Next, we give a transformation method from a discrete-
time controller into a continuous-time controller. We con-
sider a zero-order hold input, which is one of simplest
continuous-time controllers, as follows:

uc(t) = Lxk, kh ≤ t < (k + 1)h, (9)

where L = [ L1 L2 L3 L4 ]T ∈ R1×4 is a gain matrix. That is,
(9) implies a state feedback law using the value of xk during
kh ≤ t < (k+1)h. From discrete-time Lagrange d’Alembert
principle [3], the following theorem can be derived.

Theorem 1: Assume that α is sufficiently small. By dis-
crete Lagrange-d’Alembert principle, the gain matrix of the
zero-order hold input is approximately obtained as

L1 =
K1

(1 − α)h
− αK2

(1 − α)2h
, L2 =

K2

(1 − α)h

L3 =
K3

(1 − α)h
− αK4

(1 − α)2h
, L4 =

K4

(1 − α)h

(10)

from the discrete input (8).

In Theorem 1, we impose the assumption on not h but
α, so the controller can be available for a larger sampling
time. Therefore, we can expect that the controller utilizes
the advantages of discrete mechanics.

3.2. Numerical Simulation

In this subsection, we show some simulations on sta-
bilization of the continuous-time cart-pendulum. We
use parameters as follows: m = 0.05 [kg], M =

0.55 [kg], l = 0.21 [m], η = 1.14 × 10−4 [Nms/rad], µ =
2.477 [Ns/m], α = 0.001, and the initial condition: θ =
0.1 [rad], θ̇ = 0 [rad/s], z = 0.05 [m], ż = 0 [rad/s]. We
consider two kinds of sampling times: h = 0.05 [s] and h =
0.1 [s]. Since the period of the pendulum is T = 1.07 [s],
the sampling time h = 0.1 [s] seems to be large.

Fig. 2 and 4 show the zero-order hold input derived by
(9) and (10) at the sampling time h = 0.05 and h = 0.1,
respectively. Fig. 3 and 5 depict the time responses of
θ and z at the sampling time h = 0.05 and h = 0.1, re-
spectively. From these figures, it can be confirmed that
the continuous-time cart-pendulum is stabilized by the pro-
posed zero-order hold input at not only a small sampling
h = 0.05 [s] time but also a larger one h = 0.1 [s]. There-
fore, we can say that our proposed method is available for
stabilization of the continuous-time cart-pendulum.
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Fig. 2 : Time Series of θ and z (Simulation, h = 0.05)
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Fig. 3 : Time Series of u (Simulation, h = 0.05)
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Fig. 4 : Time Series of θ and z (Simulation, h = 0.1)
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Fig. 5 : Time Series of u (Simulation, h = 0.1)

4. Experiment

4.1. Problem Setting

In this section, we apply the control method shown in
the previous section to the actual cart-pendulum in order
to examine the application potentiality of discrete mechan-
ics. The cart-pendulum equipment is shown in Fig. 6 and
its parameters are m = 0.05 [kg], M = 0.55 [kg], l =
0.21 [m], η = 1.14 × 10−4 [Nms/rad], µ = 2.477 [Ns/m],
which are the same values as the ones used in the simula-
tions.

We consider two kinds of sampling times: h = 0.05 [s]
and h = 0.1 [s] and use α = 0.001, which are also same

values as the ones used in the simulations. The initial con-
dition of the cart-pendulum is as follows: the angle of the
pendulum: 0.1 [rad], the angular velocity of the pendulum:
0 [rad/s] the position of the cart: 0.05 [m], the angular ve-
locity of the pendulum: 0 [m/s].

Pendulum

Cart

Fig. 6 : Laboratory Equipment of Cart-Pendulum

4.2. Experimental Results

Based on the problem setting shown in the previous sub-
section, we perform some experiments of the actual cart-
pendulum.

Fig. 7–10 illustrate the results of the experiments. Fig.
7 and 9 show the zero-order hold input derived by (9) and
(10) at the sampling time h = 0.05 and h = 0.1, respec-
tively. Fig. 8 and 10 depict the time responses of the
pendulum and the cart at the sampling time h = 0.05 and
h = 0.1, respectively. From these results, we can confirm
that the cart-pendulum is stabilized by the proposed zero-
order hold input, and for h = 0.1 [s], which is a larger sam-
pling time in comparison with the pendulum’s period, the
cart-pendulum is stabilized. Hence, we can say that our
control method is also available for stabilization of the ac-
tual cart-pendulum.
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Fig. 7 : Time Series of θ and z (Experiment, h = 0.05)
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Fig. 8 : Time Series of u (Experiment, h = 0.05)
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Fig. 9 : Time Series of θ and z (Experiment, h = 0.1)
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Fig. 10 : Time Series of u (Experiment, h = 0.1)

5. Conclusion

In this paper, we have presented a stabilizing control
method for the cart-pendulum and a transformation method
from discrete-time inputs to continuous-time zero-order
hold inputs from the viewpoint of discrete mechanics. In
both simulations and experiments, we have shown that the
proposed method can stabilize not only the continuous-
time cart-pendulum but also the actual cart-pendulum.

Our future work is as follows: a stabilizing control
method based on model predictive control swing-up con-
trol of the discrete cart-pendulum, applications to other me-
chanical systems such as gaits of humanoid robots.

References

[1] J. E. Marsden, G. W. Patrick and S. Shkoller, “Mul-
tisymplectic Geometry, Variational Integrators and
Nonlinear PDEs,” Comm. in Math. Phys., vol.199,
pp.351–395, 1998.

[2] C. Kane, J. E. Marsden, M. Ortiz and M. West,
“Variational Integrators and the Newmark Algorithm
for Conservative and Dissipative Mechanical Sys-
tems,” Int. J. for Numer. Meth. in Engineering, vol.49,
pp.1295–1325, 2000.

[3] J. E. Marsden and M. West, “Discrete Mechanics
and Variational Integrators,” Acta Numerica, vol.10,
pp.3571–5145, 2001.

[4] A. M. Bloch, M. Leok, J. E. Marsden and D. V.
Zenkov, “Controlled Lagrangians and Stabilization
of the Discrete Cart-Pendulum System,” in Proc. of
44th IEEE CDC-ECC, Seville, Spain, pp.6579–6584,
2005.

[5] A. M. Bloch, M. Leok, J. E. Marsden and D. V.
Zenkov, “Controlled Lagrangians and Potential Shap-
ing for Stabilization of the Discrete Mechanical Sys-
tems,” in Proc. of 45th IEEE CDC, San Diego, USA,
pp.3333–3338, 2006.

[6] D. G. Luenberger, “Non-linear Descriptor Systems,”
J. Econom. Dynam. Cont., vol.1, pp.219–242, 1979.
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