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Abstract—In this article, a computer assisted proof
framework is introduced. Computer assisted proof method
shows the existence and local uniqueness of exact solutions
of nonlinear PDEs. Based on Newton-Kantorovich theo-
rem, our numerical method is another variant of computer
assisted proofs which provides verified numerical error es-
timates by numerical computations with result verification.
One feature is that, by adopting hyper-circle equation in
a posteriori error estimate, our method can deal with ar-
bitrary polygonal domain. Furthermore, Raviart-Thomas
mixed finite element enables us to get an effective residual
bounds with respect to an operator equation. Our approach
is presented first for an abstract problem. Then, some nu-
merical results are demonstrated.

1. CAP framework

Let us explain our computer assisted approach first for
the following abstract problem:

Find u ∈ V satisfying F (u) = 0, (1)

with V denoting a Hilbert space with its inner product
(·, ·)V . We also define the dual space of V as V∗. Let
F : V → V∗ denote some Fréchet differentiable mapping.
Let û ∈ V be an approximate solution to (1), and Fréchet
derivative of F at û denotes F ′[û] : V → V∗, i.e. satisfying

‖F (û + ν) − F (û) − F ′[û]ν‖V∗ = o(‖ν‖V ), ‖ν‖V → 0.

Assuming that we know three constants K, δh and Lc such
that

‖F ′[û]−1‖V∗,V ≤ K, (2)

i.e., K bounds the inverse operator of F ′[û]. δh bounds the
residual of approximation:

‖F (û)‖V∗ ≤ δh. (3)

Lc denotes the Lipschitz constant of F ′, which is required
to be Lipschitz continuous on the certain ball D ⊂ V ,

‖F ′[v] − F ′[w]‖V,V∗ ≤ Lc‖v − w‖V , ∀v,w ∈ D. (4)

Our main task to computer assisted analysis is the cal-
culation of these constants explicitly. In order to prove the

existence and local uniqueness of the exact solution in the
neighborhood of û, the following theorem is applicable to
(1). This theorem is called Newton-Kantorovich theorem
[1]. After that we give an elementary proof based on Ba-
nach’s fixed point theorem.

Theorem 1 Assuming that the Fréchet derivative F ′[û] is
nonsingular and satisfies

‖F ′[û]−1F (û)‖V ≤ α,

for a certain positive α. Then, let B(û, 2α) :=
{v ∈ V : ‖v − û‖V ≤ 2α} be a closed ball centered at û with
radius 2α. Let also D ⊃ B(û, 2α) be an open ball on V. We
assume that for a certain positive ω, the following holds:

‖F ′[û]−1(F ′[v] − F ′[w])‖V,V ≤ ω‖v − w‖V , ∀v,w ∈ D.

If αω ≤ 1
2 holds, then there is a solution u ∈ V of (1)

satisfying

‖u − û‖V ≤ ρ :=
1 −
√

1 − 2αω
ω

. (5)

Furthermore, the solution u is unique in (5).

Since α ≤ Kδh and ω ≤ KLc form (2)-(4), the concrete
computation of K, δh and Lc yields computer assisted proof
of the existence and local uniqueness to the problem (1).
Therefore, if

αω ≤ K2δhLc ≤ 1/2

is obtained by verified computations, then the existence and
local uniqueness of the solution are proved numerically.

Remark 1 Our computer assisted proof method requires
the approximate solution of (1) in a certain finite dimen-
sional subspace, such as the finite element subspace of V.
It means that we can verify the solution when one have the
approximate solution of (1) in the discrete subspace of V.

2. Variational form

Let Ω be a bounded polygonal domain in R2 with arbi-
trary shape. In this article, we are concerned with Dirichlet
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boundary value problem of the semilinear elliptic equation
of the form: {

−∆u = f (u), in Ω,
u = 0, on ∂Ω, (6)

where f : V → X is assumed to be Fréchet differentiable.
For example, the following function

f (u) = −b · ∇u − cu + c2u2 + c3u3 + g

with b(x) ∈ (L∞(Ω))m, c, c2, c3 ∈ L∞(Ω) and g ∈ X satisfies
this condition.

In the classical analysis of variational theory, the solution
to the Dirichlet boundary problem (6) satisfies the varia-
tional boudary value problem: Find u ∈ V such that

(∇u,∇v) = ( f (u), v), for all v ∈ V. (7)

Here,

(∇u,∇v) :=
∫
Ω

∇u · ∇vdx, and ( f (u), v) :=
∫
Ω

f (u)vdx.

The original problem (6) is transformed into (7) equiva-
lently. Further it is represented by

Au = N(u), (8)

where the operatorA : V → V∗ is defined by

〈Au, v〉 := A(u, v) = (∇u,∇v), for all v ∈ V

and N : V → V∗ is denoted by

〈N(u), v〉 = ( f (u), v), for all v ∈ V.

Therefore, we define the operator F : V → V∗ by F (u) :=
Au − N(u). Eq.(8) can be written as

F (u) = 0.

This is nothing but the abstract problem (1).
In order to apply Newton-Kantorovich theorem, the

Fréchet derivative of F is needed. The Fréchet differen-
tiability of F is derived by that of f . We can define an
operator N ′[û] : V → V∗ by〈N ′[û]u, v

〉
:= ( f ′(û)u, v), ∀v ∈ V. (9)

For a given û ∈ V , the Fréchet derivative F ′[û] : V → V∗

of F : V → V∗ at û is given as

F ′[û] = A−N ′[û].

Now, we define the natural embedding operator i(X↪→V∗) :
X → V∗. For fixed w ∈ X, we can define

〈i(X↪→V∗)w, v〉 := (w, v) for all v ∈ V.

Since i(X↪→V∗) : X → V∗ is compact and f ′(û) : V → X is
continuous, the composite operator

N ′[û] = i(X↪→V∗) ◦ f ′(û) : V → V∗

is compact.

3. Properties for arbitrary polygonal domain

Let V be Hilbert space and Vh be its finite approximation.
For the computer assistance, we need an error estimate of
an orthogonal projection P1

h : V → Vh, which is defined by

A(u − P1
hu, vh) = 0, ∀vh ∈ Vh.

The error estimate is given by the following theorem. Espi-
cially, we emphasize this estimation works on non-convex
domain by adopting hyper-circle equation.

Theorem 2 (Liu and Oishi [2]) For f ∈ L2(Ω), let u ∈ V
and P1

hu ∈ Vh be solutions of

(∇u,∇v) = ( f , v), ∀v ∈ V

and (
∇(P1

hu),∇vh

)
= ( f , vh), ∀vh ∈ Vh,

respectively. Putting CM :=
√

(C0
h)2 + κ2, a posteriori esti-

mation is obtained

|u − P1
hu|H1 ≤ CM‖ f ‖L2 ,

‖u − P1
hu‖L2 ≤ CM |u − P1

hu|H1 ≤ (CM)2‖ f ‖L2 .

Here, C0
h is error estimate of another orthogonal projection,

which maps L2(Ω) to piecewise constant functions (denot-
ing Mh) defined by

(u − P0
hu, vh) = 0, ∀u ∈ L2(Ω), vh ∈ Mh.

Furthermore, κ is a computable quantity such that

κ := max
0, fh∈Mh

min
vh∈Vh

min
ph∈W fh

‖ph − ∇vh‖L2

‖ fh‖L2
,

where W fh is subspace of H(div,Ω) satisfying div ph+ fh =
0, ∀ fh ∈ Mh. Next, Sobolev’s embedding constant is calcu-
lated as below.

Lemma 1 Let σ ∈ [0,∞) denote the minimal point of the
spectrum of −∆ on V. Let p ∈ [2,∞) and ν denote the
largest integer less than p/2. We have

Ce,p :=
(

1
2

) 1
2+

2ν−3
p [ p

2

( p
2
− 1

)
· · ·

( p
2
− ν + 2

)] 2
p
σ−

1
p ,

where the bracket term is put equal to 1 if ν = 1.

Lower bound of the minimal spectrum with respect to −∆
is given as follows.

Theorem 3 (Liu and Oishi [2]) Let λk be spectrums of
−∆. λ̃k is assumed to be its discretized approximation with
verified computations. CM is the same as above. Suppose

1 − (CM)2λk > 0,

then each spectrum of −∆ is bounded by

λ̃k

1 + (CM)2λ̃k
≤ λk ≤ λ̃k.
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4. Each quantity K, δh & Lc

For the norm of inverse operator, K is bounded by the
following theorem. This theorem is a modification of the
main theorem in M.T. Nakao et al. [3] in 2005. Further,
another evaluation of K has been computed by M. Plum
[4]. Let Vh be a finite element approximation of V and
Vc := V \ Vh be its orthogonal complement.

Theorem 4 Let N ′[û] : V → V∗ be the linear compact
operator defined in (9). For three constants K1, K2 and K′,
we assume

‖ f ′(û)u‖L2 ≤ K1‖u‖V , ∀u ∈ V,

‖ f ′(û)uc‖L2 ≤ K2‖uc‖V , ∀uc ∈ Vc

and

‖P1
hA−1N ′[û]uc‖V ≤ K′‖uc‖V , ∀uc ∈ Vc.

Assuming that the finite dimensional operator P1
h(I −

A−1N ′[û])|Vh : Vh → Vh is invertible with∥∥∥∥(P1
h(I −A−1N ′[û])|Vh

)−1∥∥∥∥
V,V
≤ τ.

Here, P1
h(I − A−1N ′[û])|Vh : Vh → Vh is the restriction of

P1
h(I − A−1N ′[û]) : V → Vh to Vh. Moreover, the error

estimate of P1
h is obtained for given f ∈ L2(Ω):

‖u − Phu‖V ≤ CM‖ f ‖L2 .

If CM(K1τK′ + K2) < 1, then (A − N ′[û]) : V → V∗ is
invertible and enjoys

‖(A−N ′[û])−1‖V∗,V ≤
√

R2 + S 2 =: K.

Here,

R :=

√
(CMK1τ)2 + 1

1 −CM(K1τK′ + K2)
and S := τ(K′R + 1).

The defect bound of residual is bounded by computer
assistance. Raviart-Thomas mixed finite elements yields a
general smoothing technique.

‖F û‖V∗ = sup
0,v∈V

|A(û, v) − ( f (û), v)|
‖v‖V

= sup
0,v∈V

|(∇û,∇v) − ( f (û), v)|
‖v‖V

= sup
0,v∈V

|(∇û − ph,∇v) + (ph,∇v) − ( f (û), v)|
‖v‖V

≤ sup
0,v∈V

|(∇û − ph,∇v)|
‖v‖V

+ sup
0,v∈V

|(div ph + f (û), v)|
‖v‖V

≤ ‖∇û − ph‖L2 + sup
0,v∈V

|( f (û) − fh(û), v − P0
nv)|

‖v‖V
≤ ‖∇û − p̃h‖L2 +C0

h ‖ f (û) − fh(û)‖L2 =: δh,

where p̃h is an interval function which contains the exact
function i.e. ph ∈ W fh . The interval obtained by verified
computations and fh ∈ Mh.

Finally, we estimate Lipschitz constant of F ′[u]. Here,
we assume that f ′ : V → L(V, L2(Ω)) is Lipschitz con-
tinuous on D. Namely, there exists a positive constant CL

satisfying∣∣∣(( f ′(v) − f ′(w))u, ψ
)∣∣∣ ≤ CL‖v − w‖V‖u‖V‖ψ‖V

for v,w ∈ D and u, ψ ∈ V . Usually, the optimal estimation
depends on the definition of f . For v,w ∈ D, we have

‖F ′[v] − F ′[w]‖V,V∗

= sup
u∈V\{0}

sup
ψ∈V\{0}

|〈(N ′[v] − N ′[w])u, ψ〉|
‖u‖V‖ψ‖V

= sup
u∈V\{0}

sup
ψ∈V\{0}

|(( f ′(v) − f ′(w))u, ψ)|
‖u‖V‖ψ‖V

≤ CL‖v − w‖V .

Therefore, one can put Lc := CL. Three quantities are com-
putable.

5. Computational results

Now, we shall present a numerical result. All computa-
tions are carried out on Mac OS X, 2.26GHz Quad-Core
Intel Xeon by using MATLAB 2010a with a toolbox for
verified computations, INTLAB [5]. We also use the mesh
generator Gmsh [6]. For an application of our computer as-
sisted proof method, we treat a nonlinear Dirichlet bound-
ary value problem on several polygonal domain:{

−∆u = u2 + η, in Ω,
u(x) = 0, on ∂Ω, (10)

where η ∈ R. Obviously, the Fréchet derivative of right-
hand side is given by f ′(û) = 2û. An approximate solu-
tion û is calculated by FEM. The approximate solution is
bounded on Ω then û is the element of L∞(Ω) in this solu-
tion. So that for û ∈ L∞(Ω) ∩ V , we have

‖ f ′(û)u‖L2 ≤ 2Ce,2‖û‖L∞‖u‖V , ∀u ∈ V,

‖ f ′(û)uc‖L2 ≤ 2C1
h‖ûc‖L∞‖uc‖V , ∀uc ∈ Vc

and Lipschitz continuity of F ′[u]. For u ∈ V and v,w ∈ D,
we have∣∣∣(( f ′(v) − f ′(w))u, ψ

)∣∣∣ ≤ 2C3
e,3‖û‖L∞‖v − w‖V‖u‖V‖ψ‖V

Rectangular domain

We consider the following equation on Rectangle do-
main {

−∆u = u2 + 10, in Ω,
u(x) = 0, on ∂Ω.
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Fig.1: Apptroximate solution on (0, 1) × (0, 2)

The following results are obtained by our computer ap-
proach. Here, h denotes mesh size. σ : lower bound of
minimal spectrum −∆, K : norm of inverse operator, δh :
residual bound and ρ : error estimate which contain unique
solution.

Table 1: Computational results

h σ K δh ρ

2−3 11.649 1.351 1.183 1.891
2−4 12.206 1.285 5.725×10−1 7.805×10−1

2−5 12.299 1.264 2.974×10−1 3.867×10−1

2−6 12.328 1.253 1.478×10−1 1.878×10−1

2−7 12.335 1.249 7.528×10−2 9.459×10−2

Hexagonal domain
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Fig.2: Apptroximate solution on hexagonal domain where
η = 5 in (10)

Table 2: Computational results

h σ K δh ρ

2−3 7.013 1.741 6.344×10−1 1.498
2−4 7.114 1.709 3.373×10−1 6.479×10−1

2−5 7.144 1.693 1.785×10−1 3.194×10−1

2−6 7.151 1.686 9.614×10−2 1.667×10−1

2−7 7.154 1.681 4.680×10−2 7.972×10−2

L-shape domain

Our evaluation is applied to non-convex domain. For a
model problem, we consider in case of η = 10 in (10).
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Fig.3: Apptroximate solution on (0, 2) \ (1, 2)

Table 3: Computational results

h σ K δh ρ

2−3 7.013 1.741 6.344×10−1 1.498
2−4 7.114 1.709 3.373×10−1 6.479×10−1

2−5 7.144 1.693 1.785×10−1 3.194×10−1

2−6 7.151 1.686 9.614×10−2 1.667×10−1

2−7 7.154 1.681 4.680×10−2 7.972×10−2
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