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Abstract—This paper presents a novel approach for an-
alyzing the structural properties of time series from real-
world complex systems by means of evolving complex net-
works. Starting from the concept of recurrences in phase
space, the recurrence matrices corresponding to different
parts of a time series are re-interpreted as the adjacency
matrices of complex networks, which link different obser-
vations if the associated temporal evolution is sufficiently
similar. We provide some illustrative examples demon-
strating that the local properties of the resulting recurrence
networks allow identifying dynamically invariant objects in
the phase space of complex systems. Moreover, changes in
the global network properties of evolving recurrence net-
works allow identifying time intervals containing hidden
dynamical transitions, which is exemplified for some finan-
cial time series.

1. Introduction

During the last years, classical graph theory has been
systematically extended and applied for studying real-
world networks in various scientific disciplines. In par-
ticular, the corresponding results have triggered substan-
tial progress in our understanding of the interplay between
structure and dynamics of complex networks, i.e., systems
that are composed of a number of mutually interacting
units [1, 2, 3, 4].

In 2006, Zhang and Small [5, 6, 7] suggested studying
the topological features of pseudo-periodic time series in
terms of complex networks. For this purpose, individual
cycles (defined by distinct minima or maxima of the studied
time series) have been considered as vertices of a network,
the connectivity of which has been established by different
proximity measures. A similar approach applicable also
to time series without obvious oscillatory components has
been suggested by Yang and Yang [8], considering embed-
ded time series and the resulting phase space vectors as ver-
tices, whose mutual (Pearson) correlation determines the
network connectivity. Both approaches are based on the
mutual proximity of different parts of a time series in a cer-

tain abstract space and utilize thresholds to this proximity
for determining a network pattern. A general alternative
to such proximity networks has been recently suggested by
Lacasa et al. [9] in terms of so-called visibility graphs.

In this work, we apply an alternative threshold-based
concept, which exploits recurrences in phase space. In this
formalism, a state (phase space vector) X(t i) is said to be
recurrent if there is t j � ti such that d(X(ti) − X(t j)) < ε
for some distance measure d(·, ·) in phase space. Under
general conditions, the structure of recurrences in phase
space can be simply encoded in terms of the recurrence
matrix [10, 11]

Ri, j = Θ(ε − d(X(ti) − X(t j))) (1)

where Θ(·) is the Heaviside function. Following the above
considerations, this matrix can be re-interpreted as the ad-
jacency matrix of an unweighted complex network asso-
ciated with the given time series (more specifically, the
adjacency matrix is given by Ai, j = Ri, j − δi, j), which
is called (ε−) recurrence network [12, 13, 14, 15]. Note
that such recurrence networks and closely related concepts
have been independently suggested by a variety of authors
(see [14, 15] for details).

The advantage of considering the concept of recurrences
instead of defining distances in terms of correlations [8]
is that it allows generating networks based on individual
observations without any embedding or consideration of
groups of observations. Recent results have revealed that
some of the fundamental dynamical invariants of complex
systems are conserved in the recurrence matrices obtained
without embedding [16] (even more, embedding is found to
sometimes induce spurious correlations [17]). This preser-
vation property allows the full reconstruction of a time se-
ries from its recurrence matrix (modulo some rescaling of
its probability distribution function) [18, 19].

We have to underline that the properties of a recurrence
network do not depend on the temporal order of vertices,
i.e., the corresponding complex network measures are in-
variant under permutations of the observations in the un-
derlying time series. In this sense, recurrence networks en-
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code purely geometric information on a time series (similar
to fractal dimensions and related concepts), which is dis-
tinctively different from most established methods of time
series analysis that rely on temporal correlations between
observations (including such that are commonly used for
the quantitative analysis of recurrence matrices [11]). Con-
sequently, recurrence networks capture different properties
of attractors or, more generally, time series than othermeth-
ods of time series analysis. Recently, the detection of dy-
namical transitions in time series [12, 15] and invariant ob-
jects in phase space [13, 14] have turned out to be two very
promising fields of application of these networks. In this
work, we review the basic corresponding results and pro-
vide additional examples for both types of application.

2. Detecting invariant objects in phase space

Dynamically invariant objects in the phase space of com-
plex systems, such as invariant manifolds or unstable peri-
odic orbits, can be detected by considering the local vertex
properties of recurrence networks. Basic examples for such
measures are degree, closeness, and betweenness central-
ity. Specifically, the degree centrality kv measures the num-
ber of direct neighbors of a vertex v with respect to a given
spatial threshold distance ε, i.e., it is proportional to the lo-
cal phase space density. Closeness centrality cv is related to
the inverse mean network distance of a vertex with respect
to all other vertices, implying that high values of closeness
appear in the central parts of the attractor, whereas the outer
parts are characterized by small values. Betweenness cen-
trality bv particularly highlights phase space regions with
a low state density, which separate regions of higher den-
sity. Hence, it characterizes the local attractor fragmenta-
tion. Note that although betweenness and degree are not
fully independent, they measure clearly distinct aspects of
the phase space density [13, 14, 15].

For a fixed ε, all three centrality measures depend on
the system size N. In contrast, the local recurrence rate
RRv = kv/(N − 1) (i.e., the density of connections in the
vicinity of a vertex v) is a non-extensive property (i.e., does
not depend on N). Another non-extensive vertex property
is the local clustering coefficient Cv, which measures the
presence of closed triangles in the network and, hence,
characterizes localized higher-order spatial correlations be-
tween observations. Since recurrence networks are spa-
tial networks, structures resolved by spatial variations of
Cv correspond to a heterogeneous spatial filling of points.
Specifically, high values of Cv often coincide with dynam-
ically invariant objects, such as unstable periodic orbits or,
more generally, invariant manifolds [13, 14, 15].

In order to illustrate the above general statements, we
consider the behavior of the mentioned vertex properties
for realizations of the logistic map at different values of
the control parameter a (Fig. 1). One observes that the
degree centrality is indeed directly proportional to the in-
variant density of the chaotic attractor, which explains the
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Figure 1: (A) Degree, (B) local clustering coefficient, (C)
betweenness (in logarithmic units), and (D) closeness cen-
trality for the ε-recurrence networks obtained from trajec-
tories of the logistic map xn+1 = axn(1 − xn) for different
control parameters a (N = 10, 000, no embedding, maxi-
mum norm, ε = 0.05σ with σ being the empirical standard
deviation of the considered realization).

sharp increase of kv at the attractor boundaries and super-
tracks. bv shows low values (i.e., few shortest paths) close
to the attractor boundaries, whereas the high values of k v

along the supertracks coincide with low betweenness val-
ues. The latter observation can be understood as an effect of
the increasing redundancy of vertices for shortest paths in
high-density regions of phase space. We further note that
the supertracks are also resolved by Cv, which is consis-
tent with its interpretation as an indicator for dynamically
invariant structures. Note that these considerations apply
not only to maps, but also to continuous dynamical sys-
tems such as the Rössler, Lorenz [13, 14, 15], or Duffing
systems (see Fig. 2)).

3. Detecting dynamical transitions in time series

One of the main applications of the quantitative analy-
sis of recurrence matrices is the identification of dynami-
cal transitions in time series. Specifically, if corresponding
quantitative measures are calculated for individual, mutu-
ally overlapping parts of the time series [11], it is possible
to use their variation with time for identifying changes in
the dynamics of the underlying system. In a similar way,
one may argue that sufficiently strong changes in the geo-
metric properties of the associated attractor in phase space
can be detected by measures obtained from recurrence net-
works. Recently, it has been demonstrated that a corre-
sponding approach works indeed very well for detecting
bifurcations in one-dimensional maps as well as real-world
paleoclimate time series [12, 15]. Specifically, the average
path length L has turned out to react sensitively to qualita-
tive changes in the systems dynamics, whereas the global
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Figure 2: As in Fig. 1 for one trajectory of the Duffing
system ẍ + δẋ − βx + αx3 = cosωt with α = β = 1.0,
δ = 0.2, γ = 0.36 and ω = 1.0 (N = 30, 000, sampling time
Δt = 0.5, RR = 0.01).

clustering coefficient C is a good indicator for the presence
of regular (e.g., periodic) dynamics. In a similar way, it has
been shown that network measures allow a better discrim-
ination between periodic and chaotic dynamics in the pa-
rameter space of continuous-time dynamical systems than
traditional recurrence quantification analysis [20].

In this work, we suggest another potential application for
the quantitative analysis of recurrence networks. In eco-
nomic time series, the behavior of the underlying system
is typically influenced by both exogenous and endogenous
shocks. Such shocks might be thought of not only causing
abrupt changes in the mean and variance of the data set, but
also in the qualitative appearence of its distribution. Con-
sidering the individual data as states in phase space, this im-
plies that the geometric properties of the system are altered
as well, which can be quantitatively characterized by mea-
sures computed from the associated recurrence networks.

Fig. 3 shows the temporal variations of global clus-
tering coefficient and average path length of the recur-
rence networks obtained for the daily exchange rates be-
tween US Dollar and Euro over the last about 10 years
(source: http://www.ecb.int/stats/exchange/eurofxref/html/
index.en.html). In order to test the statistical significance,
we additionally computed recurrence networks from surro-
gate data containing 10,000 random samples (containing
the same number of data as the considered sliding win-
dows) taken from the original data set [12, 15]. Our results
reveal some interesting general features. For example, the
pronounced minimum of the global clustering coefficient
C in 2004 (panel (C)) appears to coincide with a period
of increased volatility in the data (panel (A)). In a similar
way, we find a significant minimum of C (panel (C)) in late
2001, possibly related with an increased market dynamics
after the September 11 assaults. Multiple dynamical tran-
sitions, which appear to be related with change points in
long-term trends, can be found in the years 2000-2001 and
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Figure 3: (A) Daily exchange rates between US Dollar and
Euro, and (B,C) average path length and global clustering
coefficient of the associated recurrence networks, obtained
for sliding windows of 200 consecutive trading days (mu-
tual offset of 20 days, no embedding, recurrence threshold
ε chosen such that the total recurrence rate is preserved at
5% [13]). The shaded areas correspond to the lower and
upper 5% confidence bounds obtained from the surrogate
networks described in the text, the red line to the corre-
sponding mean values.

around early 2004, late 2005 and late 2006 when consid-
ering the variability of the average path length L (panel
(B)). While the detection of this type of transition is fairly
trivial, we point out that our method also allows identi-
fying more subtle transitions, e.g., by considering the ex-
change rates subjected to some appropriate detrending be-
fore further analysis. Note, however, that in case of the
highly volatile multi-scale dynamics of financial time se-
ries, the features resolved after detrending crucially differ
from those obtained from the original data. A similar be-
havior can be expected when additional embedding is used.

4. Summary

We have demonstrated that evolving complex networks
constructed from the recurrence properties of dynamical
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systems allow studying non-trivial properties of these sys-
tems in terms of network-theoretic measures. Local ver-
tex properties of recurrence networks (in particular, the lo-
cal clustering coefficient) can be used for identifying dy-
namically invariant objects such as unstable periodic or-
bits or, more generally, invariant manifolds, whereas their
global network properties (especially average path length
and global clustering coefficient) detect time intervals cor-
responding to dynamical transitions and highly regular or
volatile dynamics. Our findings open a wide field for novel
applications of complex networks in data analysis, which
make recurrence networks a promising candidate for the
analysis of a variety of different transdisciplinary problems.
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