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Abstract– The anatomical primate connectome has 

some pronounced properties, highly related to the 
information processing and brain disorder disease. 
However, the mechanism underlying the network 
properties, especially the relationship between the spatial 
layout and anatomical connectome, is not clear. This work 
studied the influence of two important but competing 
constraints of wiring cost and efficiency on the Macaque 
anatomical wiring diagram. It is revealed that the existence 
of similar modular and multiple hubs structure, even the 
location of hubs is attributed to a proper trade-off between 
the two fundamental constraints. However, the degrees of 
non-hubs cannot be fully explained by the two constraints. 
Further fixing the degrees of cortical areas, nearly 70% of 
connections of Macaque connectome can be recovered 
under the trade-off between the wiring cost and processing 
efficiency constraints. These findings suggest that the cost-
efficiency trade-off contribute to the characteristic 
architecture of neural networks at different scales.  
 
1. Introduction 
  
 The complex anatomical primate connectome is the 
physiological basis for brain dynamics, neural information 
processing and mental functions [1-3]. In recent years, the 
topological features of cortical connectome detected by 
graph theoretical approaches have attracted broad 
attention, such as the small world [4], densely connected 
modules [5], large-degree hubs [6, 7], because the 
pronounced features is related to information processing 
and brain disorders [8, 9]. However it is poorly 
understood about the mechanisms underlying the 
formation of such complex topological features, especial 
their relationship to the spatial layout of the anatomical 
connectome.  
 The organization of neural networks is strongly 
affected by fundamental constraints. The most extensively 
discussed constraint is the wiring cost constraint [10-13]. 
Most of these previous studies found that the real 

component placement layout of some neural subsystems 
has been optimized under the wiring minimization, but not 
for the whole neural network [10-13]. It has been 
speculated that the anatomical connectome is the result of 
an economical trade-off between the physical cost and the 
functional values of the topology [14]. But it is still not 
clear what these functional constraints are and what the 
relationship is between the neural network properties and 
functional values 

The processing efficiency, measured by processing 
steps across the neural network, is strongly related to 
minimizing noise, fast response, and even cognitive 
ability as well as the brain diseases [16-20]. Thus in this 
work, processing efficiency is taken as the representative 
functional value.  

In the present work we explored how the anatomical 
Macaque connectome is shaped by the cost-efficiency 
trade-off by systematically testing the effect of the 
competition of multiple constraints. We compared the real 
network properties to reconstructed networks derived 
from multiple constraints by fixing the spatial position of 
each network node and the total number of connections as 
in the real networks. The reconstructed networks are 
generated by minimizing the objective function L = (1 − 
α)  + α , where  represents the influence of the 
wiring cost constraint measured by the total physical 
distance, while  represents the influence of the 
processing efficiency constraint measured by the total 
graph distance of the shortest paths. At different weight 
values of α, the reconstructed networks were obtained by 
minimizing the objective function L starting from 50 
random configurations by simulated annealing. Then we 
compared different network properties in the 
reconstructed networks to those in the real network. In the 
final part, we further fixed the degrees of all areas as in 
the real network, then obtained the reconstructed networks 
for a given α, and examined the overlap between the 
connections in the reconstructed networks and the real 
network.  Our analyses provided the evidence that the 
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wiring cost-efficiency trade-off plays a basic role in 
explaining network properties. 
  
2. Results 
 
2.1. Cost-efficiency trade-off leads to the coexistence of 
hubs and local connections 
 For the real Macaque cortical network (Fig. 1A, B), the 
reconstructed networks at different α are acquired by the 
cost-efficiency trade-off model. At α=0, the reconstructed 
networks only considered the influence of processing 
constraint. Thus all the links in the reconstructed network 
are connected randomly, which means there are a large 
number of long-range connections, and the wiring cost is 
very high (Fig. 1C). At α=1, only the wiring cost 
constraint is considered. Thus all links in the 
reconstructed network are connected locally (Fig. 1F). 
There is no hub in the reconstructed network. Notably, the 
spatial layout of the network nodes is non-uniform in the 
real network (Fig. 1A), forming spatial clusters. Thus 
these local connections make the adjacency matrix of the 
reconstructed network non-uniform as shown in Fig. 1F.  

When α stays between 0 and 1, the wiring cost and 
processing efficiency constraints combine their impact, 
resulting in two different regimes. When α is positive but 
not very large (0 < α < 0.8), the reconstructed networks 
have the single global hub and all the other links 
connected locally. The global hub is a very effective 
configuration to provide high efficiency, when all the 

other connections are short-distance due to the wiring cost 
constraint. Notably, because of the wiring cost constraint, 
the global hub stays in the geometrical central of the 
whole network area A1, which is not the hub in the real 
network. As α increases, the long-range connections of the 
global hub cannot meet the increasing need of the wiring 
cost constraint. Thus several smaller hubs emerge, staying 
at the local geometrical central with connections 
extending to nodes in their spatial neighborhood. The rest 
links are still connected locally. When the control 
parameter α is around 0.85, the local connections and 
multiple hubs coexist in the reconstructed network, similar 
to that in the real Macaque cortical network. 
 
2.2. Similar modular structure as in the real cortical 
network  under the cost-efficiency trade-off 
 We analyzed modules in the real Macaque cortical 
network and reconstructed networks. The modularity in 
the real network is Q=0.395, corresponding to two 
modules. When α=0, the reconstructed network under the 
single efficiency constraint is the random network without 
clear modular structure (Q=0.096). But when α is positive, 
the modularity in the reconstructed network is quite large, 
around 0.5. Comparing the modular division between the 
reconstructed and real network, the number of 
mismatched areas achieves the minimal, only 15% of total 
cortical area, when α stays between 0.8 and 0.9 (shown as 
red stars in Fig. 2A). 

 
 

Fig. 1 Comparison of reconstructed and original connectivity of Macaque cortical network. The left two plots (A 
and B) are for the original network. (A) The layout placement of 103 areas and the connections between them. (B) 
Adjacency matrix, the output (kout) and input (kin) degrees of the areas. The right four plots (C-F) show adjacency 
matrices and the degrees of areas in the reconstructed networks at various values of α. (C) α = 0, (D) α = 0.4, (E) α = 0.9 
and (F) α = 1. 
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2.3 Location of hubs 
 As stated in the first section, when α stays between 0 
and 0.8, the reconstructed networks have the single global 
hub at the geometrical central of the whole cortical 
network. When 0.8 < α < 0.96, several intermediate-size  
hubs emerge, staying at the local geometrical central of 
the different modules. Especially for α around 0.9, V5/MT, 
area 46, MSTm and MSTd appeared as hubs (z-score 
above 2.0 either in total, output or input degrees). Notably, 
the area V5/Mt and area 46 are coincidence with the 
biggest hubs in the real network in terms of the total 
degree and out-degree respectively (two biggest green 
stars in Fig. 2B). They are close to geometrical centers of 
the two modules, shown by blue and red color in Fig. 2A.   
There are other 4 hubs, such as area 7a, VIPl, 7b, LIPv in 
the real network and they are close to the hubs in the 
reconstructed networks.   
 
2.4. Degrees of cortical areas 
 Not only considering the hub regions, now we examine 
the degrees of areas in the original and reconstructed 
networks. Interestingly, the correlation between degrees 
and the number of areas within distance r is significantly 
present in the real network (colored curves in Fig. 2C). 
The correlation can reach 0.49 at ~0.14 for 

Macaque, much larger than the 95% of the significance 
level in the corresponding surrogate data (black line). 
 
2.5 Reconstructed network under three constraints  
 We found that the correlation of degrees between the 
real and reconstructed networks is significant, but not very 
high, suggesting that the degrees are affected by 
additional unknown requirements, rather than just the cost 
and efficiency constraints. Thus we fixed the degrees  as 
that in the real cortical network as the additional 
constraint and reconstruct networks under the cost-
efficiency trade-off to explore the influence of three 
constraints on the anatomical Macaque cortical network.  
 Fig. 2D compares the recovery rate , where 
the recovery rates  is for the connected pairs ( ) 
while the recovery rates  is for the connected pairs 
( ), as a function of α under the two constraints 
with that under the three constraints. R can be improved 
from about 60% under the two constraints up to larger 
than 75% under the three constraints. Notably, nearly 70% 
of the connections in the real network can be recovered 
under the three constraints (red dots in Fig. 2E). 
Especially, most connections (73%) within the functional 
systems can be recovered under the three constraints. 

Fig. 2 Network features in the real Macaque cortical network are recovered by the reconstructed network under 
the cost-efficiency constraints (two constraints) or three constraints (with the degrees fixed additionally). (A) 
Modularity of original Macaque network and reconstructed networks. The blue and red colors represent the two 
modules in the reconstructed network. The mismatched areas for modular division are shown by the stars between the 
real and reconstructed network. (B) 6 hubs in the real network (red bullets, with the size of the symbol indicating the 
total degree) and 4 hubs in the reconstructed network at α ∼ 0.9 (green stars). The positions of the reconstructed or real 
hubs coincide or are close to each other. (C) Correlation between degrees vs. the normalized radius  for 
reconstructed (α = 0.9) and real networks. The results differ for the output (blue line), input (red line) and total degree 
(green line) in the real network.  (D) The recovery rates R of the two constraint schemes, without (square) and with 
(triangle) fixed degrees, as functions of α for Macaque. (E) The adjacent matrix of the real Macaque cortical network, 
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compared to the reconstructed network obtained at α = 0.006. The red links are recovered while the blue links are not. 
The cortical areas are grouped by the functional systems. V: visual, S: somatosensory, M: motor, T: temporal, F: frontal 
system. 
 
3. Conclusion 
 We studied the anatomical Macaque connectome  from 
the perspective of multiple constraints, in particular the 
cost-efficiency trade-off. By reconstructing networks 
while preserving the spatial layout of the cortical areas, 
we obtained the understanding of the relationship between 
spatial layout and wiring diagram derived from multiple 
constraints. This understanding guided us to explore the 
mechanism of the pronounced network features in the real 
Macaque cortical network, namely the coexistence of 
modules and multiple hubs, as well as the small-world 
property with a large number of local connections. With 
the degrees further fixed, most connections within 
functions can be recovered under the cost-efficiency 
constraints. It further illustrated that the cost-efficiency 
trade-off have the impact on the level of the cortical-
cortical connections.  

 
4. Materials 
The connectivity { } of the nonhuman primate 
(Macaque monkey) cortical network studied in this work 
has N = 103 areas and K = 2518 connections in total [15]. 

 if there is link from area j to i, and  
otherwise. Most of the dataset is based on the previous 
dataset with 94 areas [13], but improved to 103 areas with 
a more detailed parcellation of the motor areas based on 
CoCoMac [2]. 
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