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Abstract—Many studies have been devoted to analyze
the Zero Average Dynamics (ZAD) strategy for controlling
power converters. In this paper the ideal model of the buck
converter is analyzed when is controlled by ZAD strategy;
however, the analog to digital process is considered in the
modeling state, because all signals used to compute the
duty cycle pass through analog to digital converter. In par-
ticular two different ways to quantize the signals are used.
As ZAD-strategy is highly sensitivity to duty cycle values
which are computed from the capacitor voltage and induc-
tor current, this communication intends to explain why the
experiments are very different from the ideal model results.

1. Introduction

In the last decade ZAD strategy has been developed
for controlling DC-DC converters. This controller uses a
sliding surface defined as a linear combination of the error
and its derivative, which is forced to have a zero average.
Previous theoretical and numerical studies have shown that
ZAD strategy offers two important advantages: very low
error and fixed switching frequency [1]. Implementations
based on DSP and FPGA technologies use Analog to
Digital (A/D) converters, which imply a quantization
process. Quantization is the process by which a continuous
range of values is approximated by a set of discrete
symbols or values. The inclusion of quantization effects
in modeling stage is not a new idea [2]-[3]; particularly,
in [4]-[5] it was proven the existence of a limit cycle. As
the ZAD control is sensitivity to computation of the duty
cycle, small changes in it causes different behaviors on the
controlled system. Some of those changes are given by
quantization process. In [6] a complete explanation about
the influence of the quantization effects on route to chaos
in a ZAD-controlled buck converter was presented, and
in [7] quantization, delay and internal resistances were
taking into account to obtain good agreement between
experiments and numerical results. The main difference
between this work and other close works is that in this
paper and with the aim to emphasize the effects of A/D
converter in numerical results, two different processes of
quantization are explored: by rounding to nearest integer

and by rounding down. Depending on what quantization
technique is used, results are very different. Major differ-
ences when bit changes are given in the duty cycle are the
main obstacle to obtain very good results in experiments.

The rest of the paper is organized as follows: section 2
presents the basis of the ZAD-control and its application
to the buck converter. In section 3 the main characteristics
of the analog to digital conversion process are presented.
Section 4 is devoted to analysis of the results. Finally, in
section 5 conclusions are presented.

2. DC-DC Buck converter with ZAD strategy

A simplified diagram of the closed-loop buck converter
is shown in Figure 2. Its main feature is that the output
value Vo is lower than the source Vin (step down converter).
Switches S 1 and S 2 operate in a complementary way, i.e.
when S 1 is open, S 2 is closed, and viceversa.

Figure 1: Scheme of a ZAD-controlled Buck converter.

The mathematical model can be expressed in compact
form as: (
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ẋ2

)
=

(
−1
RC

1
C

−1
L 0

) (
x1
x2

)
+

(
0

Vin
L

)
u (1)

where x1 = VC , x2 = IL and u belongs to {0, 1}.
The next step is to design a control strategy so that the

load voltage V0 is regulated to a desired value. To solve
this regulation problem, it is necessary to compute the time
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(D) when the switch S 1 is ON (u = 1) in each previously
defined sampling time T (D ∈ [0 T ]). Time D is known as
the duty cycle and it is normalized to d = D/T (d ∈ [0 1])
and is usually presented in percentage. The control strategy
we use is based on the concept of Zero Average Dynamics
on the output (ZAD) [8].

The ZAD-strategy can be summarized as follows. First,
choose a sampling time T and a surface s(x) = 0 in the state
space; second, force s(x(t)) to have zero average in each
sampling time; and finally, compute the duty cycle. As re-
ported in [9], one of the practical possibilities for choosing
the surface is to define a piecewise-linear function spwl(t).
Then, the zero average condition is

(k+1)T∫
kT

spwl(t)dt = 0 (2)

where we can solve for the duty cycle D. If the duty cycle
exceedes the limit value, then is saturated. With this duty
cycle, which changes in each T -cycle, the system exhibits
rich dynamic: transitions from stable 1T-periodic orbit to
chaos, including period-doubling, chaotic bands merging,
and period-doubling of chaotic band processes, among oth-
ers, when parameter ks is varied [1].

Table 1: Simulation parametrics values
Parameter Value

Vin 40V
R 20Ω

L 2mH
C 40uF

Reference 32V
ks 4.5/

√
LC

T 50us

A simulation of the ZAD-controlled buck converter us-
ing parameter values registered in table 1 is depicted in Fig-
ure 2. With these results we can show that ZAD-strategy
present a steady state error of 0.0617% and 1-periodic or-
bit with non-saturated duty cycle d = 79.84%

3. Analog to Digital Conversion Process

A/D converter transforms a continuous signal in a set
of discrete values. Since the ZAD strategy will be imple-
mented in a digital platform, it is convenient to include the
A/D conversion process in the modeling stage. Figure 3
shows the main parts of this process, which are: sample
and hold, quantization and encoder processes.

3.1. Sample and hold and quantization processes

The sample and hold process consists of taking the value
of the signal at a given instant kT (sampling) and holding it
until the instant kT +T . On the other hand, the quantization

Figure 2: Dynamic close-loop buck converter system con-
trolled by ZAD-strategy

Figure 3: Scheme of the Analog-to-Digital conversion pro-
cess.

process consists of transforming a continuous signal into a
finite discrete set of values. The quantization is a nonlinear
process and it can be expressed mathematically as

h =
Vre f hi

2n (3)

where h indicates the quantization level, n is the number
of bits of the A/D converter, and Vre f hi is the high voltage
reference. A quantized signal is shown in Figure 4, the
dashed line represents the desired linear response, and the
staircase functions is the output of the quantizer.

3.2. Encoder Process

In this part, a binary code is assigned to each stair in the
Figure 4. In this paper we considerate two expressions to
compute the A/D converter code:

ADCCode = round

2n
(
x(n) − Vre f low

)
Vre f hi − Vre f low

 (4)

ADCCode = f loor

2n
(
x(n) − Vre f low

)
Vre f hi − Vre f low

 (5)
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Figure 4: Quantizer characteristic

Where Vre f low is the low voltage reference. Equation (4)
uses the function round, which rounds to nearest integer,
and eq. (5) rounds down. As it is analyzed in the next
section, depending on what expression is used, the response
of the ZAD control is very different.

4. Results

Simulation results including the A/D process are shown
in Figures 5 and 6. In all cases Vre f hi = 40V , Vre f low = 0V ,
and n is varied to compare the behaviour of the system.
Depending on the number of bits n as well as of the
A/D conversion technique the duty cycle exhibits very
different behaviour compared to ideal model. Figure

Figure 5: Percent duty cycle varying ADC resolution using
equation 4 to calculate ADCcode

5 was obtained using Eq. (4) to compute the values of
the state variables; in this case, the steady state errors
(not shown here) were 2.7645%, 1.1200%, 0.0773% and
0.0635% for n = 8, n = 10, n = 12 and n = 16 bits,
respectively. For n = 8 and n = 10 bits the system
exhibits 4-periodic orbit with two non-saturated duty
cycles d1 = 51.95%, d2 = 81.89% for the first case, and

Figure 6: Percent duty cycle varying ADC resolution using
equation 5 to calculate ADCcode

d1 = 54.57%, d2 = 62.06% for the second case, and two
saturated duty cycle d3, d4 = 100%. For n = 12 and
n = 16 the duty cycle oscillates between a maximum and
minimum of non-saturated duty cycles, dmx = 85.38%
and dmn = 73.79% for n = 12; and dmx = 80.41% and
dmn = 79.57% for n = 16.

Figure 6 was obtained using Eq. (5) to compute the
values of the state variables; in this case, the steady state
errors (not shown here) were 6.2699%, 1.7872%, 0.4897%
and 0.0346% for n = 8, n = 10, n = 12 and n = 16 bits,
respectively. For n = 10 it is not clear the periodicity of the
duty cycle; For n = 12 and n = 16 the duty cycle oscillates
between a maximum and minimum of non-saturated duty
cycles, dmx = 86.39.38% and dmn = 74.81% for n = 12;
and dmx = 80.35% and dmn = 79.62% for n = 16.

5. Conclusions

It was numerically proven that depending on the round-
ing of the quantizer, the value of the duty cycle does not
change significatively but the behaviour of the system do.
For this reason, inclusion of analog to digital conversion
process in the modeling of ZAD-controlled buck converter
is essential to obtain better results than the ideal model; this
is because the technique is high sensitive to small changes
in the values of the state variables, mainly on the current
value. Also, it can be seen chaotic transient dynamics in
the simulations.
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[8] E. Fossas, R. Griñó, and D. Biel, “Quasi-sliding con-
trol based on pulse width modulation, zero averaged
dynamics and the L2 norm”. in Advances in Variable
Structure System, Analysis, Integration and Applica-
tions, Ed. by Xinghuo Yu and Jian-Xin Xu, Ed. World
Scientfic, pp.335–344, 2001.

[9] F. Angulo, G. Olivar and M. di Bernardo, Two-
parameter Discontinuity-induced Bifurcation Curves
in a ZAD-Strategy Controlled DC-DC Buck Con-
verter. IEEE Trans. on Circuits and Systems-I, Reg-
ular papers 55:2392-2401. 2008.

- 104 -


