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Abstract– Barycentric coordinates are first used in 
Mees, Int. J. Bifurcat. Chaos (1991) to model a short 
nonlinear time series faithfully, while his formulation is 
restricted to low-dimensional dynamics because it employs 
triangulation. We recently relaxed his formulation by using 
linear programming (Hirata et al., Chaos (2015)). Using 
this relaxation, we can generate prediction and freeruns 
from a high dimensional time series. In this talk, we will 
review these recent advancements on barycentric 
coordinates and discuss some indices that evaluate locally 
the modelling accuracy for barycentric coordinates. 
 
1. Introduction 
 

Modelling time series data is an essential step to 
understand the underlying dynamics. In this context, Mees 
[1] provided a great contribution. He divided the phase 
space by tessellations and constructed barycentric 
coordinates, within which the current point is expressed as 
a linear combination of data points. The coefficients of the 
linear combination take values between 0 and 1 and their 
total is exactly 1. When one predicts p steps ahead, one 
can take the average of p steps ahead of data points 
weighted by the same coefficients. Mees [1] demonstrated 
that the Hénon map can be modelled faithfully only by 
using a time series of length 50. 

Although the barycentric coordinates proposed by 
Mees [1] was fantastic, they also had a limitation, which is 
that we cannot model high-dimensional dynamics easily 
because obtaining tessellations in a high-dimensional 
space is very expensive. 

To overcome this limitation, we recently proposed to 
construct barycentric coordinates using linear 
programming [2]. In this relaxation, we allowed some 
error for approximating the current point by neighboring 
points in the phase space. We also enforced the conditions 
of the coefficients that they are between 0 and 1 and their 
sum is equal to 1. Then, we minimized the approximation 
error. This minimization problem is a linear program and 
we can use a variety of commercial software to solve it. In 
[2], we demonstrated that the Rössler model and the 
Lorenz’63 models can be modelled such that their 
reconstructed models also reproduce the original shapes of 

the attractors. In addition, we modelled violin sounds, 
which cannot be distinguished from the original sounds 
easily. 

In this presentation, we introduce our relaxation of 
barycentric coordinates [2] with more details and discuss 
that the modelling accuracy is evaluated locally using two 
indices related to this relaxation. 
 
2. Barycentric Coordinates Defined by Linear 
Programming 
 
2.1. Definition 
 

Suppose that we have a dynamical system 
MMf →: ( )(1 tt xfx =+  for ,...2,1=t ) we are 

interested in. We observe a scalar time series 
)()( txgts =  ( ,...2,1=t ) through the observation 

function RMg →: . Using delay coordinates [3,4] 
denoted by 

( ) )()(),...,2(),1()( 1+−≡+−+−= dtxGtsdtsdtstv  

for dt ≥ , we reconstruct the state tx of the underlying 
dynamics from this scalar time series. Namely, due to the 
following diagram, we can reconstruct the dynamics 

dd RRf →:~  on the delay coordinates that is equivalent 
to the original dynamics f : 
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We denote the k th component of )(tv  by )(tvk . 

Suppose that we may generate prediction up to P  
steps ahead. In addition, suppose that Tt ≥ and that we 
predict p  steps ahead ( Pp ,...,2,1= ). First, we find K  
neighboring points to )(tv  from 

{ }PTddiiv −+= ,...,1,|)( in the sense of the 
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Euclidean norm, and denote by tI  a set of time indices for 

the neighboring points. Then, we approximate )(tv  by a 

linear combination of v(i) | i ∈ It{ }  using the 

coefficients iλ  satisfying 10 ≤≤ iλ for tIi∈ and 

1=∑
∈ tIi

iλ , namely, 

.)()( ∑
∈

≈
tIi

t ivtv λ                   (1) 

In our formulation in [2], we allow the error 0≥ε  for 
the approximation of Eq. (1). Thus, we have 

−ε ≤ vk (t)− λivk (i)
i∈It

∑ ≤ ε,  for k=1,2,...,d.  

Thus, finding a set of the coefficients for barycentric 
coordinates can be formulated as the following linear 
program: 

{ }
ε

λ ti Ii∈|
min                                   (2) 

subject to 
0≥ε , 

−ε ≤ vk (t)− λivk (i)
i∈It

∑ ≤ ε,  for k =1, 2,...,d,   

10 ≤≤ iλ for tIi∈ and  

1=∑
∈ tIi

iλ . 

Then p steps ahead prediction is given by 

.)())((~)(ˆ ∑
∈

+=≈+
tIi
i

p pivtvfptv λ  

We used Matlab’s function “linprog” to solve this linear 
program. 
 
2.2. Formula for Evaulating Modelling Accuracy 
Locally 
 

By using Taylor’s expansion, the following relation can 

be obtained [2] in terms of the approximated dynamics f̂  
by barycentric coordinates: 

),()()())((~))((~))((ˆ 2δλ Otvivtvftvftvf
tIi
i +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−ʹ′+= ∑

∈

   (3) 

where δ shows the size of convex hull constructed by the 
neighboring points. The second term is directly related to 
the quantity obtained by Eq. (2). For example, if this 
second term vanishes due to 0=ε , then the 
approximation by barycentric coordinates becomes the 
first order approximation as similarly to [1]. The optimal 
ε  is related to the distance between the current point and 
the data manifold [5] spanned by the past points. 
Therefore, the value defined by Eq. (2) can be used as an 
index for evaluating the approximation error. Thus we call 
the index of Eq. (2) as the approximation error. 

 
2.3. Quantity for Evaulating the Goodness for a Set of 
Neighboring Points 
 

Another quantity for evaluating our approximation is 
related to how good the space spanned by neighboring 
points is. For this sake, we use the Gram matrix 
constructed by the neighboring points. Let us define a 
matrix V as 

( )))(())(()),...,(())(()),(())(( 11312 tivtivtivtivtivtivV K −−−= , 

where )(til  denotes the l th component of tI . We use 

det for representing the determinant of a matrix followed. 
Then, we employ the next quantity for evaluating the 
goodness of prediction: 

).'det( VV                               (4) 
This quantity, the Gram determinant, is expected to be 
close to 0 when the neighboring points are degenerated 
and not linearly independent. In addition, Eq. (4) becomes 
large when the convex hull spanned by the neighboring 
points is large and the approximation by Eq. (3) becomes 
rough. Thus, we can use Eq. (4) for evaluating the 
goodness of  our prediction using barycentric coordinates. 
 
3. Example 
 
3.1. Lorenz’96II model 
 

We evaluated the two quantities for evaluating locally 
the modelling accuracy using a time series generated from 
the Lorenz’96II model [6,7]. The Lorenz’96II model is a 
toy model of the atmosphere. In this model, two types of 
variables are connected in the structure of double rings, 
between which are connected locally. The outer ring 
corresponds to the upper sky of the atmosphere. The inner 
ring corresponds to the air close to the surface of the earth. 
The variables corresponding to the outer ring are denoted 
by iy ( Ii ,...,2,1= ), while the variables corresponding 

to the inner ring are denoted by jiz ,  ( Ii ,...,2,1=  and 

Jj ,...,2,1= ). The equations for the Lorenz’96II model 
are defined as follows: 

,,1112 ∑−+−+−= +−−−
j

ji
y

iiiiii z
b
ch

Fyyyyyy!  

,,1,1,2,1,, i
z

jijijijijiji y
b
chczzcbzzcbzz +−+−= +−++!  

,Iii yy +=  

,,1, jiJji zz ++ =  

where we set the parameters as follows: 8=F , 10=b , 
10=c , 1=yh , 1=zh , 40=I , and 5=J . We 

generated a scalar time series of length 
2365246 ××× by observing 1,1z  every 0.01 unit times. 
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We used the first half of the dataset for modelling and 
evaluated the prediction using the second half. We set 

36=d . 
The results are shown in Fig. 1. We found that the 

prediction errors for 36 steps ahead prediction were 
correlated with the optimal ε  (Fig. 1(a)) and the 
logarithm for the Gram determinant (Fig. 1(b)). The 
correlation coefficients were 0.0467 (p-value: 

271043.9 −× ) and 0.0461 (p-value: 261009.4 −× ), 
respectively. 
 
3.2 Solar irradiance at Wakkanai, Japan 
 

We applied the credibility measures of the 
approximation error and the Gram determinant to the 

dataset of solar irradiance for evaluating their relation to 
the prediction error by barycentric coordinates. The 
dataset was provided by the Japan Meteorological Agency. 
The dataset recorded the solar irradiance at Wakkanai, 
Japan every 10 minutes between 1 January 2010 and 31 
December 2011. We used the dataset of year 2010 to 
predict the dataset of year 2011. We set 180=d  to take 
into account the temporal changes for solar irradiance for 
the previous days. 

The results are shown in Fig. 2. The approximation 
error has a positive correlation with the prediction error 
(correlation coefficient: 0.0398, p-value: 201098.6 −× ), 
while the Gram determinant has a negative correlation 
with the prediction error (correlation coefficient: -0.0564, 
p-value: 381082.2 −× ). 

Fig. 1. Prediction error vs optimal ε  using Eq. (2) (panel (a)) and )'det(log10 VV  using Eq. (4) (panel (b)), for the 
example of Lorenz’96II model. 
 

Fig. 2. Prediction error vs optimal ε  using Eq. (2) (panel (a)) and )'det(log10 VV  using Eq. (4) (panel (b)), for the 
example of solar irradiance at Wakkanai, Japan. 
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3.3. Mean wind speed over Japan 
 

We also evaluated the performance for the 
approximation error and the Gram determinant using the 
mean wind speed over Japan. The dataset was provided by 
the Japan Meteorological Agency. We used the dataset of 
year 2010 to predict the dataset of year 2011. We had the 
mean wind speed every 10 minutes. We set 36=d  and 
thus the delay coordinates correspond to the time window 
of 6 hours. 

The results are shown in Fig. 3. Both the approximation 
error and the Gram determinant have small positive 
correlations (0.0563 and 0.0109, the corresponding p-
values 381057.3 −× and 21026.1 −× , respectively) with 
the prediction error by barycentric coordinates. 
 
4. Discussions 
 

Modelling a time series by barycentric coordinates was 
introduced. We found that barycentric cooridnates for a 
high-dimensional space can be constructed easily using 
linear programming. In addition, the prediction produced 
by barycentric coordinates can be evaluated locally using 
the two quantities of the approximation error and the 
Gram determinant. In this sense, the time series prediction 
using barycentric coordinates is sophisticated. We hope 
that barycentric coordinates enable us to introduce more 
renewable energy resources to power grid systems. 
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