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Abstract—This paper deals with a feedback con-
trol using automatic choosing functions and the filter-
control design procedure for nonlinear systems with
noisy linear measurement. A constant term which
arises from linearization of a nonlinear equation is
treated as a coefficient of a stable zero dynamics. A
given nonlinear system is linearized piecewise so as to
be able to design the linear optimal controllers with
filter. By the automatic choosing functions, these
controllers are smoothly united into a single nonlin-
ear feedback controller, which is called an augmented
automatic choosing control of filter type by using Ex-
tended Kalman filter. Simulation results show that
the new controller enables to improve the stability of
electric power systems well.

1. Introduction
The problem of nonlinear control design has been

studied for many years[1-8]. Most controllers are syn-
thesized by linearizing a given nonlinear system so that
the linear estimation and control theories are applica-
ble when some of the state variables of the system are
not measurable. One of them is based on a truncation
at the first order of the Taylor expansion[1,2]. This
control law is easy to implant in many practical non-
linear systems, but is only useful in small region or in
almost linear ones. Controllers based on a change of
coordinates in differential geometry [3,4] are effective
in wider region, but not easy to implant in practical
systems. Controllers based on Fuzzy reasoning[5] are
more practical, but usually needs a lot of divisions.
Controllers using an automatic choosing function[6,7]
are superior, but noisy system cases have not yet stud-
ied.

This paper is concerned with a nonlinear feedback
controller by using the automatic choosing functions
and the linear control theory for nonlinear systems
with noisy linear measurement. For state estimation,
it makes use of an approach of Extended Kalman filter.
This controller well works even in nonlinear systems
with high nonlinearity and wider region. Consider-

ing the nonlinearity, we define some separative vari-
ables whose inverse domain associated with the region
of system is divided into some subdomains. On each
subdomain, the system equation is linearized by the
Taylor expansion so as to apply the LQ control theory
[2,8]. Constant terms by this linearization are treated
as coefficients of a stable zero dynamics[7]. The re-
sulting linear controls are smoothly united by the au-
tomatic choosing function to make a single nonlinear
feedback control, whose estimator is Extended Kalman
filter[2]. This controller is called an augmented auto-
matic choosing control of filter type (AACCF) using
Extended Kalman filter.

Experimental results indicate that the stability of
electric power systems by AACCF is more improved
than by the ordinary linear optimal controller (LOC).

2. Statement of Problem
The plant is assumed to be described by a nonlinear

dynamic equation and a linear measurement equation

ẋ = f(x) + g(x)u, x ∈ D ⊂ Rn (1)

y = Hx + v (2)

where · = d/dt, x = [x[1], · · · , x[n]]T is an n-
dimensional state vector, u = [u[1], · · · , u[r]]T is an
r-dimensional control vector, y = [y[1], · · · , y[m]]T is
an m-dimensional measurement vector, f is a nonlin-
ear vector-valued function with f(0) = 0 and is con-
tinuously differentiable, g is an n × r nonlinear driv-
ing matrix with g(0) �= 0, H is an m × n constant
measurement matrix, v is a white Gaussian noise of
N (v : 0, V ), and T denotes transpose.

Considering the nonlinearity of the system (1), in-
troduce a vector-valued function C : D → RL which
defines the separative variables {Cj(x)}, where C =
[C1 · · ·Cj · · ·CL]T is continuously differentiable. Let
D be a domain of C−1. For example, if x[1] is the el-
ement which has the highest nonlinearity of (1), then

C(x) = x[1] ∈ D ⊂ R (L = 1).
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The domain D is divided into some subdomains:
D = ∪M

i=0Di, where DM = D − ∪M−1
i=0 Di and

C−1(D0) � 0. Di(0 ≤ i ≤ M) endowed with a
lexicographic order is the Cartesian product Di =
ΠL

j=1[aij , bij ], where aij < bij .
We here introduce an automatic choosing function

of sigmoid type:

Ii(x) =
L∏

j=1

{
1 − 1

1 + exp (2N (Cj(x) − aij))

− 1
1 + exp (−2N (Cj(x) − bij))

}
(3)

where N is positive real values, −∞ ≤ aij < bij ≤
∞. Ii(x) is analytic and almost unity on C−1(Di),
otherwise almost zero(see Figure 1).

The aim of the paper is to design a nonlinear feed-
back control AACCF by smoothly uniting the section-
wise controls and by using Extended Kalman filter.

3. Design of Control
The nonlinear function f of (1) is linearized by the

Taylor expansion truncated at the first order about a
point χ̂i ∈ C−1(Di) and χ̂0 = 0 on each subdomain
Di (see Figure 2):

f(x) 
 f(χ̂i) + Ai(x − χ̂i) = Aix + wi

where
Ai = ∂f(x)/∂xT |x=χ̂i , wi = f(χ̂i) − Aiχ̂i.

Introduce a stable zero dynamics :
˙̂x[n+1] = −σx̂[n+1] (4)

(x̂[n+1](0) 
 1, 0 < σ < 1),

where the value of σ shall be selected so that σ =
− ˙̂x[n+1]/x̂[n+1] ≤ −ẋ[k]/x[k] holds for all k (k =
1, · · · , n). This tries to keep x̂[n+1] 
 1 for a good
while, when the system (1) is not on C−1(D0). We
approximate f as

f(x) 
 Aix + wi 
 Aix + wix̂[n+1]. (5)

Assume that the control is designed by using (3) as

u =
M∑
i=0

uiIi(x̂) (6)

where x̂ is an estimate of x.
Note that

∑M
i=0 Ii(x̂) = 1 for(3). Substituting (5)

and (6) into (1), the dynamic equation becomes

ẋ = f(x) + g(x)u

=
M∑
i=0

f(x)Ii(x̂) +
M∑
i=0

g(x)uiIi(x̂)

=
M∑
i=0

(Aix + wix̂[n+1] + Biui + εi(x))Ii(x̂)(7)

aij bij aij bij

N=3.0 N=6.00.5

1

Figure 1: Automatic Choosing Function
(N = 3.0,6.0)
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Figure 2: Sectionwize linearization

where Bi = g(χ̂i), εi is approximation error.
Consider a special case of Ii(x̂) = 1 in which N =

−aij = bij → ∞ in (3).
Put X = [xT , x̂[n+1]]T , then Eqs.(4) and (7) yield

an approximated linear equation:

Ẋ = ĀiX + B̄iui

where
Āi =

[
Ai wi

0 −σ

]
, B̄i =

[
Bi

0

]
.

Therefore we apply the LQ control theory to get the
control formula as follows.
Consider that the system and cost function

Σ :
{

Ẋ = ĀiX + B̄iu
Ji = 1

2

∫ ∞
0 (XT QX + uT

i Rui)dt
(8)

are given. Then an application of the linear optimal
control theory [2] yields

ui(X) = −FiX

Fi = R−1B̄T
i Pi (9)

where the (n + 1) × (n + 1) matrix Pi satisfies the
Riccati equation:

PiĀi + ĀT
i Pi + Q − PiB̄iR

−1B̄T
i Pi = 0. (10)

Here, Q = QT > 0 and R = RT > 0 which denote
positive symmetric matrices. Values of Q and R are
properly determined based on engineering experience
[8].

4. Design of Filter
We shall make use of an approach of Extended

Kalman filter[2] for state estimation.
Assume that the filter equation is given by

˙̂x(t) = f(x̂(t)) + g(x̂(t))u + K(t)(y(t) − Hx̂(t)) (11)
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with initial value x̂(0) = x̄0.
If the nonlinear equation of (1) is linearized by the
Taylor expansion about an assumed known optimal
estimate x(t) = x̂(t), then

ẋ(t) 
 f(x̂(t)) + F (t)(x(t) − x̂(t)) + g(x̂(t))u (12)

where F (t) = ∂f(x)/∂xT |x=x̂(t).
From Eqs.(11) and (12), the difference equation e =
x − x̂ is derived as

ė(t) = (F (t) − K(t)H)e(t) − K(t)v(t), (13)

so the variance S(t) = var(e(t)) being zero-mean be-
comes

Ṡ(t) = (F (t) − K(t)H)S(t)
+S(t)(F (t) − K(t)H)T + K(t)V KT (t)

(14)

with initial value S(0) = S0.
We find K(t) such as to minimize an index

J(t) = tr(S(t))

where tr(·) denotes the trace operator.
Thus we have

K(t) = S(t)HT V −1 (15)

Ṡ(t) = F (t)S(t) + S(t)FT (t) − S(t)HT V −1HS(t)
(16)

as the minimum error variance.
Therefore the filter algorithm is obtained by
Eqs.(11)(15) and (16).

5. Synthesis of AACCF
From the above sections 3 and 4, we have the

AACCF formula as follows.
[AACCF formula]
˙̂x(t) = f(x̂(t)) + g(x̂(t))u + K(t)(y(t) − Hx̂(t))

(x̂(0) = x̄0)
˙̂x[n+1](t) = −σx̂[n+1](t) (x̂[n+1](0) 
 1)

u(t) =
M∑
i=0

uiIi(x̂(t))

K(t) = S(t)HT V −1

where
Ai = ∂f(x)/∂xT |x=χ̂i , wi = f(χ̂i) − Aiχ̂i

F (t) = ∂f(x)/∂xT |x=x̂(t), Bi = g(χ̂i)

Āi =
[

Ai wi

0 −σ

]
, B̄i =

[
Bi

0

]

ui = −R−1B̄T
i PiX̂, X̂ = [x̂T , x̂[n+1]]T

PiĀi + ĀT
i Pi + Q − PiB̄iR

−1B̄T
i Pi = 0

Ṡ(t) = F (t)S(t) + S(t)FT (t) − S(t)HT V −1HS(t)

(S(0) = S0)

Ii(x̂) =
L∏

j=1

{
1 − 1

1 + exp (2N (Cj(x̂) − aij))

− 1
1 + exp (−2N (Cj(x̂) − bij))

}

Since this formula is of a structure-specified type,
each parameter included in the above equations must
be properly selected so that the feedback control sys-
tem (1) by AACCF could stabilize globally.

6. Numerical Example

Consider a control problem of power system.

M
d2δ

dt2
+ D

dδ

dt
+ Pe(1 + ΔEfd) = Pin

y =
dδ

dt
+ v, Pe =

elEfd

Xe
sin(δ)

where δ: phase angle, δ̇ = dδ/dt: rotor speed, M :
inertia coefficient, D: damping coefficient, Pin: me-
chanical input power, Pe: generator output power, Xe:
transmission line impedance, el: infinite bus voltage,
Efd: field excitation voltage, ΔEfd: deviation of Efd.
Put x=[x[1], x[2]]T =[δ − δ̂0, δ̇]T and u = ΔEfd.
Then this system is described by Eqs.(1)and(2), where
n = 2, r = 1, m = 1 and H = [0, 1].

Parameters are M = 0.06[pu], D = 0.06[pu], Efd =
1.0[pu], el = 1.0[pu], Xe = 1.0[pu], Pin = 0.8[pu],

δ̂0 = 0.9276[rad], and ˙̂
δ0 = 0.0[rad/sec].

Set X = [xT , x̂[3]]T = [x[1], x[2], x̂[3]]T , C(x)=x[1],
L = 1, M = 1, N = 8, a1 = 0.6, χ̂0 = 0, χ̂1 =
[1.51, 0]T , σ = 0.1, R = 1, Q = diag(1, 1), V = 1,

X̂(0) = [0, 0, 1]T , S(0) =
[

5 10
10 50

]
.

These values are selected by trial and error. Exper-
iments are carried out for the new control(AACCF)
and the ordinary linear optimal control (LOC)[1, 2].
Figure 3 depicts the stable regions for AACCF and
LOC. Figure 4 makes a comparison between AACCF
and LOC for the time responses of x[1], x[2] and u when
X(0) = [1.3, 0, 1]T . Figure 5 shows the state x[i] and
its estimate x̂[i] of the AACCF in Fig.4 for i = 1 and
2. Experimental results indicate that the stable region
and trajectories by the new AACCF are much better
than those by the LOC.

7. Conclusions

We have studied an augmented automatic choos-
ing control of filter type (AACCF) using Extended
Kalman filter for nonlinear systems with noisy linear
measurement. This controller has been applied to a
control problem of power system. Simulation results
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Figure 4: Time responses of x and u

have shown that the new controller is able to improve
the stability and trajectories well.
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