
Hierarchical and Modular organization of Corticocortical Networks supports
Functional Integration and Segregation in the Mammalian Brain
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Abstract—There is increasing evidence that the archi-
tecture of corticocortical networks support the capacity of
the brain to simultaneously segregate and integrate infor-
mation. Here, we confront the concept of integration,
which is rarely addressed in the literature of information
theory, to cross-validate the functional implications as-
signed to such networks. We propose a novel framework to
quantify the segregative and integrative properties of corti-
cal networks by defining a minimal set of conditions their
nodes need to obey from a functional perspective. Applica-
tion of these conditions shows that a particular set of corti-
cal areas are highly responsible for the integration of mul-
tisensory information. This set coincides with the areas
predicted from the purely topological analysis to perform
such a function. Our findings are in agreement with mod-
ern models which propose that high-level brain functions
emerge from interactive and overlapping networks of neu-
rones which trascend any of the traditional subdivisions of
the cortex by structural (cytoarchytecture) and functional
criteria.

1. Introduction

Sensory neurones encode environmental information
into electrical signals which propagate in a “bottom-up”
manner through different processing stages of the nervous
system [1, 6]. Information of the same modality (e.g. vi-
sual, auditory, somatosensory, etc.) traverses the body to-
gether, typically separated from the processing paths of
other modalities. This permits that particular regions of the
cortex specialise in detecting features of the sensory stim-
uli, e.g. orientation, velocity and colour of the visual input;
or frequency and pitch of the auditory stimuli. However, in
order to generate a coherent perception of the reality, the
brain needs to combine (integrate) this multisensory infor-
mation at some place [8] and during some time [2, 3, 11].
For that, the paths of information need to converge.

There is increasing evidence that the functional capacity
of the nervous system to balance between segregation (spe-

cialisation) and integration might be facilitated by its struc-
tural organisation. Analysis of the connectivity between re-
gions of the cerebral cortex in macaque monkeys and cats
has revealed their modular organisation [10, 9, 4, 5]. Two
areas are more likely connected if both are specialised in
the processing of the same modal information (e.g. visual
or auditory information). Additionally, the network con-
tains several interconnected hubs, conforming a modular
organisation with centralised hierarchy [13] that might be
an optimal natural solution to keep different information
separated, but permitting at the same time a controled inte-
gration of all the information.

In this paper we challenge the functional properties of
this modular and hierarchical structure by means of dy-
namical and information theoretical measures. We propose
minimal conditions that lead to integration of multisensory
information and we test them in the corticocortical network
of the cat. In order to objectively detect the set of hubs that
optimise integration, we perform a statistical analysis of
these properties in a wider ensemble of possible hub com-
binations. We find that only simultaneous lesion of partic-
ular hubs leads to a dynamical segregation of the sensory
modules (visual, auditory, somatosensory-motor and fron-
tolimbic), and only the same hubs form a dynamical clus-
ter after simultaneous excitation of primary sensory areas,
a clear sign of their integrative capacities.

2. Data

After an extensive collation of literature report-
ing anatomical tract-tracing experiments, Scannell and
Young [10, 9] published a dataset containing the cortico-
cortical and cortico-thalamical projections between regions
of one brain hemisphere in cats. The connections were
weighted according to the axonal density of the projec-
tions. Connections originally reported as weak or sparse
were classified with 1 and, the connections originally re-
ported as strong or dense with 3. The connections reported
as intermediate strength, as well as those connections for
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which no strength information was available, were classi-
fied with 2. Here we make use of a version of the net-
work consisting of N = 53 cortical areas interconnected by
L = 826 directed corticocortical projections.

3. Functional Capacity of Integration

While information theory has largely dealt with describ-
ing and quantifying channel capacity, coding and decoding
of signals, etc., it has not faced the problem of integration.
Many natural and artificial systems, such as the nervous
system, need to deal with information arising from differ-
ent sources. In this sense, we aim for a definition of integra-
tion which characterises the capacity of a system to receive
and process information of different character and to com-
bine it generating new useful information. Certainly, this
definition involves crucial theoretical problems, e.g. what
the character of information is, or what are the rules un-
der which information is combined. Nevertheless, within a
networked system, the nodes with a capacity to integrate in-
formation should obey certain measurable conditions. We
propose the following:
1) Accessibility to information: A node can perform an
integrative function only if it has general access to the in-
formation contained within the system.
2) Sharing of information: Two or more nodes can per-
form integrative function in a collaborative manner only if
they are sufficiently connected with each other.

As a corollary of these two conditions, we should include
the following, third condition:
3) Segregation after selective damage: If a node has an
integrative function, its removal should lead to a decrease
of the integrative capabilities of the whole system.

In order to test these conditions on the central hubs of
the corticocortical network of the cat, we perform two
numerical experiments: (i) after excitation of primary
sensory areas, we quantify the dynamical interdependence
between the hubs, see Figure 1a, and (ii) we measure
the decrease in integration capacity of the network after
the hubs have been removed, Figure 1b. Aiming for a
statistical description that objectively highlights the more
relevant hubs for integration, we relax the definition of
hub and perform both experiments for each of the 524, 097
possible sets of cortical hubs, of sizes NS = 1 to NS = 19,
formed by the following set of areas:
Shubs = {20a, 7, AES, EPp, 6l, 6m, 5Am, 5Al, 5Bm, 5Bl,
SSSAi, SSAo, PFCL, Ia, Ig, CGa, CGp, 35, 36}.

The steady-state of a linear system whose N subsys-
tems x = (x1, x2, . . . , xN) are driven by a Gaussian noise
ξ = (ξ1, ξ2, . . . , ξN), is described by xi = g

∑
j Ât

i jx j + ξi,
where g is the coupling strength and Ât is the normalised
transpose of the adjacency matrix. Otherwise the dynam-
ics of xi would be characterised by its own outputs, not by
the inputs it receives. The adjacency matrix is normalised
by its largest eigenvalue such that the coupling strength g
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Figure 1: Schematic representation of the numerical exper-
iments. (A) The network is stimulated by increasing the
noise level of the primary sensory areas. The consequent
integration I(S ) between a group of hubs is measured. (B)
After simultaneous removal of a set of hubs, the integration
capacity I(X − S ) of the remaining network is measured.

is equivalent for networks of different size and topology.
Written in matrix form:

x = gÂt x + ξ. (1)

The entropy of such a multivariate Gaussian system can be
analytically calculated as H(X) = 1

2 log
[
(2πe)N |COV(X)|

]
,

where | · | stands for the determinant [7, 12]. The entropy
of an individual Gaussian process is H(xi) = 1

2 log(2πeνi),
where νi is the variance of xi, say, the ith diagonal ele-
ment of the COV(X) matrix. The covariance matrix can
be analytically computed by solving the system such that
x = 1

1−gAt ·ξ = Q ·ξ, and averaging over the states produced
by successive values of ξ one finds: COV(X) =

〈
x · xt〉 =〈

(Q · ξ) · (ξt · Qt)
〉

= Q · Qt.
Following Tononi and Sporns [12] we define the integra-

tion of the system X as the extension of the mutual infor-
mation for X composed of more than two subsystems:

I(X) =

N∑
i=1

H(xi) − H(X) (2)

where H(xi) is the entropy of one subsystem and H(X) =

H(x1, x2, . . . , xn) is the joint entropy of the system consid-
ered as a whole. I(X) = 0 only if all xi ∈ X are statistically
independent of each other, and positive otherwise. I(X)
measures the internal level of statistical dependence among
all the subsystems xi ∈ X. Replacing H(X) and H(xi) of the
linear system into Equation (2) and applying basic algebra,
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we reduce the integration of such a multivariate Gaussian
system as:

I(X) =
1
2

log
 ∏N

i=1 νi

|COV(X)|

 . (3)

4. Results

In the following, we perform the two numerical ex-
periments considering, unless otherwise stated, coupling
strength g = 0.5 for all the links and a noise level of ξi = 1.0
is added to all the areas. These parameters lead to similar
covariance matrices as those obtained from more realistic
models [14, 15, 16].

4.1. Dynamical integration after sensory stimulation

We simulate external stimulation by an increase in the
noise level of primary sensory areas: primary visual cor-
tex (area 17), primary auditory cortex (area AI) and pri-
mary somatosensory cortex (areas 1, 2 and 3b). Accord-
ing to [9] the cortical areas 1, 2 and 3b are subregions of
the primary somatosensory area, named by some authors as
SI. We simultaneously excite all the primary sensory areas
{17, AI, 1, 2 and 3b} by assigning them a larger noise level
ξ j = 10.0) and we measure the local integration among the
areas in a subsets S of hubs out of Shubs. Because of the
excited condition, the integration of the subsets is denoted
as Ie(S ). The integration I(S ) of a subset of nodes S is
computed as in Equation 3 by extracting COV(S ) as a sub-
matrix of COV(X) formed by the nodes in the set S , and by
considering the variance νi of the nodes in the set.

The results depicted in Figure 2A show that Ie(S ) can
largely differ. For example, among all the subsets of size
Ns = 10, the integration of some of them is very small,
Ie(S ) ∼ 0.1, while the integration of others becomes much
larger, Ie(S ) ∼ 0.5. These differences permit us to identify
those cortical hubs which, grouped together, become more
dynamically dependent among them as a consequence of
the multisensory stimulation. Considering only those sub-
sets whose Ie(S ) lies within the largest 10% (red crosses in
Figure 2A) a co-participation matrix C is constructed such
that Ci j is the number of times (given in frequency) that
two cortical hubs participate together in one of the maximal
sets, Figure 2B. It is observed that areas {7, AES; EPp; 6m;
Ia, Ig, CGp, 35, 36} participate together in over 75% of all
the maximal sets. Visual area 20a and the somatosensory-
motor area 6l participate only in 50% of the occasions with
those areas in the core. The remaining areas, {5Am, 5Al,
5Bm, 5Bl, SSSAi, SSSAo and PFCL}, can be discarded as
members of the dynamical core.

4.2. Dynamical segregation after multiple lessions

For all the possible subsets S composed of hubs in Shubs,
we perform a lesion to the network by simultaneously re-
moving the nodes xi ∈ S and characterise the consequent

Figure 2: Functional segregation and integration. (A) Lo-
cal integration I(S ) of cortical hubs after stimulation of the
primary sensory areas. (B) Co-participation matrix of corti-
cal hubs within the subsets leading to large Ie(S ) (red dots).
(C) Modular integration IP4 of the sensory modules V, A,
SM and FL after simultaneous lesion of cortical hubs. NS is
the number of hubs removed. (D) Co-participation matrix
of the hubs within the subsets S which lead to a larger de-
crease in the dynamical dependence (IP4 (S )) of the sensory
modules (marked by red dots).

functional segregation of the network as the change in sta-
tistical dependence between the four modules (V, A, SM
and FL). Lesion of areas critical for the integration capaci-
ties of the system should lead to a dynamical segregation of
the modules, i.e. a decrease in their statistical dependence.

As defined in Equation (3), I(X) represents the limit case
in which the statistical dependence among all the elements
xi in the system X is quantified. To cover different scales of
organisation we propose to characterise the statistical de-
pendence between groups of elements. Imagine a partition
P = {S 1, S 2 . . . S n} into n groups (modules) of the elements
xi such that X = S 1 ∪ S 2 ∪ . . . ∪ S n. Then, we define the
modular integration of the partition P as:

IP(X) =

n∑
j=1

H(S j) − H(X). (4)

Note that when n = N, then IP(X) = I(X).
Considering the partition P4 = {V, A, SM, FL} and the

corticocortical network of the cat, then IP4 (Gcat) = 0.292.
The modular integration of each lesioned network GS is
computed for the partition P4. Notice that a) the nodes are
also removed from the partition and b) every GS is ade-
quately normalised by its largest eigenvalue such that the
measured observables are comparable across realisations.
The results in Figure 2C permit us again to discriminate be-
tween subsets of hubs whose simultaneous removal lead to
a large segregation of the network, while removal of other
subsets has barely no effect.
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Selecting only those subsets whose lesion leads to a
larger segregation of the modules, i.e. IP4 (GS ) lies among
10% of the minimal modular integration for each size NS

(red dots in Figure 2A), a co-participation matrix C is
constructed, Figure 2D. The entries Ci j are the number
of times (given in frequency) that two areas participate
together in one of the minimal subsets. A core of cortical
areas is found which participate together in over 70%
of these cases: {7, AES; EPp; Ia, Ig, CGp, 35, 36}.
Somatosensory-motor areas 6m, 5Al and 5Bl join them in
over 50% of the cases.

5. Conclusions

In summary, we have analysed the modular and hierar-
chical organisation of the corticocortical network of the cat
and its relationship to the intrinsic necessities of the brain to
simultaneously segregate and integrate multisensory infor-
mation. By means of dynamical and information theoreti-
cal measures, we have corroborated its capacity to integrate
multisensory information, i.e. after simultaneous excitation
of visual, auditory and somatosensory primary areas, a par-
ticular set of hubs becomes dynamically dependent form-
ing a cluster. Additionally, the simultaneous lesion of these
hubs leads to a largest decrease in the integrative capacities
of the network. Both numerical experiments indicate that
visual areas 7 and AES, auditory area EPp and frontolimbic
areas Ia, Ig, CGp, 35 and 36 are the most likely candidates
to form the top hierarchical module. The participation of
somatosensory-motor areas is less clear, although area 6m
is the strongest candidate of them. Visual area 20a and
somatosensory-motor areas 5Al and 5Bl are also potential
candidates. This set largely coincides with the top hierar-
chical level found by the graph analysis [13], corroborating
the integrative function assigned to the hubs by intuitive
interpretation of their topological characteristics.
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Hilgetag, and J. Kurths. Hierarchical organization
unveiled by functional connectivity in complex brain
networks. Phys. Rev. Lett., 97:238103, 2006.

[16] C. S. Zhou, L. Zemanová, G. Zamora-López, C. C.
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