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Abstract—We introduce a method of constructing net-
works from multivariate time series. The method enables
us to construct networks even if a given multivariate time
series do not have strong similarity. We show a simple ex-
ample where a common method based on similarity does
not work. The method we introduce is demonstrated for
numerical data generated by a known system and applied
to actual time series with unknown dynamics.

1. Introduction

To tackle phenomena in the real world, one of the first
valid approaches is to consider that the phenomena move
by systems and to assume the underlying systems [1]. Ele-
ments in the system interact with each other. To understand
the details of the interaction among the elements, the con-
cept of complex networks has been widely recognized to
be useful [2, 3].

There are work to construct a network from multivariate
time series. As time series usually show irregular fluctua-
tions, it is difficult to know the precise relationship among
them on the first impressions. For constructing a network
from multivariate time series the cross correlation function
with a constant threshold is used most extensively [4, 5],
which we refer to as “the common method.” The cross
correlation function is one of the useful statistics that can
directly investigate some kind of relations between two sig-
nals. When the statistic has strong peaks or has large ab-
solute values between−1 and+1 at some time lags the
result is a good indication that the data have similarities.
Then, we expect that there are correlation structures be-
tween the two signals (or that similar factors may influence
both systems). Then, the pair is considered to be connected
with an undirected link. However, the patchwork of many
two-body information might not be the same as the many-
body information as a whole. Also, although periodicities
in multivariate time series contain important information,
the cross correlation function cannot treat it directly. Fur-
thermore, we cannot the direction between the nodes on
the network constructed by the common method. Hence,
it might be preferable if we could capture many-body pe-
riodicities and directions among dynamical elements in a
system as a whole from a dynamical system-wide perspec-
tive, even if the time series do not have large values of cross

correlation. In this paper, we introduce such a method for
constructing directed networks from multivariate time se-
ries based on the linear modeling technique.

2. Common technology

The most extensively used method to construct networks
from multivariate time series can be reduced to the follow-
ing three steps [4, 5].

1. Each time series is considered as a basic node of a
network.

2. To investigate the relationship among multivariate
time series, the cross correlation between each pair of
time series (i.e. two time series) taken from the whole
multivariate time series is estimated.

3. The pair of nodes corresponding to the chosen two
time series is connected with an undirected edge when
the value of the cross correlation is larger than an ap-
propriately chosen threshold.

We referred this method to as “the common method”, as
mentioned above. Although the common method based on
the concept of the cross correlation has been proved to be
effective in various cases [4, 5], the range of applicability
might be restrictive because “no similarity” is not equiva-
lent to “no correlation” [6].

3. Our proposed algorithm

To construct directed networks from multivariate time
series from a dynamical system-wide perspective, even if
the time series do not have large values of cross correlation,
we use the reduced auto-regressive (RAR) model [7].

Periodic or nearly periodic behavior is an important na-
ture for many time-dependent phenomena in the real world.
Without including such (nearly) periodic effects, we can-
not reproduce the time-dependent phenomena properly [8].
There are several widely accepted techniques to estimate
the period of behavior, such as spectral estimation, auto-
correlation, wavelet transforms and so on [7]. However,
these methods cannot provide accurate and decisive peri-
odicities.
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Small and Judd have proposed a method to identify pre-
cise periodicities directly from the model [7]. The tech-
nique is based on an information theoretic reduction of
AR models, which is referred to as the reduced auto-
regressive (RAR) model [7]. RAR models include mini-
mal number of terms indispensable for describing time se-
ries as assessed by an information criterion. There are also
strong information theoretic arguments to support that the
RAR model can detect any periodicities built into a given
time series [7]. Moreover, the RAR model has proven to
be effective in modeling both linear and nonlinear dynam-
ics [9, 10]. Hence, we consider to construct directed net-
works based on information included in RAR models from
multivariate time series.

The building of an RAR model from given time series
proceeds as follows. Given a scalar time series{x(t)}nt=1 of
n observations, an RAR model with the largest time de-
lay lw can be expressed by

x(t) = a0 +

w
∑

i=1

aix(t − li) + ε(t), (1)

where 1≤ l1 < l2 · · · < lw, ai (i = 0,1,2 . . . ,w) are param-
eters to be determined, andε(t) is assumed to be indepen-
dent and identically distributed Gaussian random variables,
which are interpreted as fitting errors. The parametersai

are chosen to minimize the sum of the squares of fitting er-
rors. To build an RAR model we prepare candidate basis
functions used in the modeling, in the form of a dictionary,
and select the most appropriate basis functions that can ex-
tract the peculiarities of the time series as much as possi-
ble [11]. As RAR models are linear, the basis functions are
a constant function and linear terms.

This methodology can be applied equally to multivariate
time series straightforwardly [7, 9, 10]. A set of multivari-
ate RAR models is expressed by

xi(t) = ai,0 +

N
∑

j=1


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

w j
∑
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

+ εi(t), (2)

wherei = 1,2, . . . ,N, N is the number of components and
lwi(≥ 0) is the largest time delay of thei-th component.

To know the best model we apply the the concept of de-
scription length in the information theory. An approxima-
tion to description length takes the form

DL(k) =
(n
2
− 1
)

ln
eT e
n
+ (k + 1)

(

1
2
+ ln γ

)

−

k
∑

i=1

ln δi (3)

wheren is the length of the time series to be fitted,e stands
for the vector composed from fitting errors,k is the number
of parameters (or model size),γ is related to the scale of the
data, and the variablesδ can be interpreted as the relative
precision to which the parameters are specified. The factor
γ is a constant and typically fixed to beγ = 32 [9]. When
a model has the smallest value of the description length

among many models, we treat the model as the “best model
(optimal model).” See more details in [9, 10].

After building the multivariate RAR model correspond-
ing to the systems under consideration, we use the informa-
tion contained these models to construct a directed network
representing the system. The model for thei-th variable
xi(t) takes the form as

xi(t) = ai,0 + ai,i,1xi(t − l1) + ai,i,2xi(t − l2)

+ ai, j,3x j(t − l3) + ai,k,4xk(t − l4) + εi(t), (4)

indicating that, to determine the value ofxi at time t, we
need the information of the values ofxi, x j, andxk at some
previous times. We pack the information of interdepen-
dency of the components contained in Eq. (4) into the form,

xi = fi(xi, x j, xk), (5)

representing that componentxi is a function of compo-
nents,xi, x j and xk, where fi stands for the function rep-
resenting the time dependency of thei-th component,xi.
When we construct a network from this expression, each
component of the multivariate time series such asxi is
translated to a node. Next, we draw directed arrows from
x j to xi and fromxk to xi, if the right hand side of the model
of xi containsx j andxk. This basic idea enables us to con-
struct a directed network embodying the entire relationship
among the components represented in a multivariate RAR
model. In Eq. (5), the componentxi itself is included in
the right hand side and the nodexi has a directed self-loop
from xi to xi in the network. Such a case indicating that a
component drives its own dynamics often happens.

4. Numerical Examples

We now demonstrate the application of our algorithm to
simulated time series data, and confirm our theoretical ar-
guments.

The system consists of four dynamical variables,x1(t),
x2(t), x3(t) and x4(t), and their time dependencies are de-
scribed by the following expressions:

x1(t) = 0.7 x1(t − 1)− 0.4 x1(t − 3)+ 0.3 x2(t − 4)

+ 0.2 x4(t − 7)+ ε1(t), (6)

x2(t) = 3.0+ 0.6 x2(t − 1)− 0.2 x2(t − 6)+ ε2(t), (7)

x3(t) = 0.5 x1(t − 2)+ 0.3 x4(t − 9)+ ε3(t), (8)

x4(t) = 0.2 x1(t − 2)+ 0.5 x4(t − 1)

− 0.3 x4(t − 3)+ ε4(t), (9)

whereεi(t) (i = 1,2,3,4) are dynamic noise, independent
and identically distributed Gaussian random variables with
mean zero and standard deviation 1.0. In this paper, we dis-
tinguish “component” and “variable” as different technical
terms. The term “component” is used for representingxi

and the term “variable” for representingxi(t − l) including
its time delay. For instance, Eq. (6) has 3 components (x1,
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x1 x2 x3 x4

x1 1.0000 — — —
x2 0.3606 1.0000 — —
x3 0.6691 0.1930 1.0000 —
x4 0.4448 0.1790 0.4900 1.0000

Table 1: The largest absolute values of the cross correlation
of all possible pairs between the time lag−30 and 30. The
data are generated by Eqs. (6)–(9), and the values are esti-
mated using 1000 data points with Gaussian observational
noise with the mean zero and the standard deviation 0.01.

x2 andx4) and 4 variables,x1(t − 1), x1(t − 3), x2(t − 4) and
x4(t − 7).

To construct the network by the common method, we
estimate the cross correlation (CC) of all pairs using 1000
data points generated by Eqs. (6)–(9). Since we have four
time series corresponding to the components,x1, x2, x3,
and x4, the network contains four nodes. All the values
are shown in Table 1. The network constructed from these
CCs with threshold 0.5 is shown in Fig. 1(a). With this
threshold, only the nodes,x1 and x3, are connected. The
connection itself seems to be reasonable, because Eq. (8)
representing the dynamics ofx3(t) includesx1(t−2). How-
ever, Eq. (6) representing the dynamics ofx1(t) does not
include the componentx3. The undirectedness of the con-
nection thus cannot capture this one-way relationship be-
tween x1 and x3. Furthermore, we would conclude that
the pair,x1 andx4 are independent, since the value of CC
between these components, 0.4452, is below the threshold
0.5. However, it is clearly untrue, because Eq. (9) rep-
resenting the dynamics ofx4(t) does include the variable
x1(t − 2). This simple example shows two insufficiencies
of the common method: (i) the undirectedness of the edges
that cannot capture the directions of the relationship be-
tween components and (ii) the arbitrariness of the thresh-
old value that cannot always recover existing relationships.
Hence, we consider that the network constructed using the
values of the cross correlation function does not properly
represent the exact relationship between components de-
fined by Eqs. (6)–(9).

We apply the multivariate RAR models to the same data
used for estimating the CCs. We obtain the multivariate
RAR model exactly the same as Eqs. (6)–(9). The packed
expressions such as Eq. (5) corresponding to this model
become

x1 = f1(x1, x2, x4), (10)

x2 = f2(x2), (11)

x3 = f3(x1, x4), (12)

x4 = f4(x1, x4). (13)

Using this summarized information we construct a di-
rected network, and the network is shown in Fig. 1(b). We
consider that this structure appears to be a more faithful and

(a) (b)

Figure 1: The constructed network: (a) The undirected ne-
towk is based on the values of the cross correlation shown
in Table 1 with threshold 0.5, (b) The directed network is
based on the result of multvariate RAR models, Eqs. (10)–
(13). In Fig. 1(b) the notation© means that the model for
a component includes the component itself, and notation¤

means that the component is not included in the model.

straightforward network representation of the time struc-
ture of the system defined by Eqs. (6)–(9) than that con-
structed using the common method with an arbitrary value
of threshold. Also, using the information we can know the
number of incoming edges (in-degree) and outgoing edges
(out-degree) of each node.

5. Applications

We apply the proposed method to multivariate time se-
ries from meteorological time series in the south pole1.
The data we use are five different time series: the atmo-
spheric pressure, the atmospheric temperature, the dew-
point temperature, the vapor pressure and the humidity,
taken hourly from 4 January to 15 February in 2015. As
shown in Fig. 2, all of them show irregular fluctuations.
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Figure 2: Meteorological hourly time series in the south
pole from 4 January to 15 February in 2015: (a) atmo-
spheric pressure, (b) temperature, (c) dew-point tempera-
ture, (d) vapor pressure and (e) humidity. These data are
used for building multivariate RAR models.

We use 1000 data points (around 42 days) to build mul-
tivariate RAR models. As there are 5 time series, choosing

1The data can be obtained from Japan Meteorological Agency,
http://www.jma.go.jp/jma/indexe.html
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Figure 3: (Color online) The directed network constructed
by multivariate RAR models of meteorological data in the
south pole. All nodes are represented by©, as all models
contain their own components. For the explanation of the
notation, see Fig. 1(b).

Table 2: The number of in-degree and out-degree of the
directed network of meteorological data shown in Fig. (3),
wherex1 corresponds to atmospheric pressure,x2 temper-
ature,x3 dew-point temperature,x4 vapor pressure andx5

humidity.

x1 x2 x3 x4 x5

in-degree 0 0 2 1 2
out-degree 0 2 1 1 1

a time delay up to 20 for time series of each data and the
constant function give 101 candidate basis functions in the
dictionary. Using the dictionary we build the multivariate
RAR model for each data. The reduced expressions of the
obtained 5 multivariate RAR models are

x1 = f1(x1), (14)

x2 = f2(x2), (15)

x3 = f3(x2, x3, x5), (16)

x4 = f4(x2, x4), (17)

x5 = f5(x3, x4, x5), (18)

wherex1 corresponds to the atmospheric pressure,x2 the
atmospheric temperature,x3 the dew-point temperature,x4

the vapor pressure andx5 the humidity.

In Fig. 3, we show the directed network constructed from
these models, Eqs. (14)–(18), representing the relationship
of interdependency among these five data. Note that all
models contain their own components, which means that
all nodes in Fig. 3 have self-loops. The numbers of in-
degree and out-degree for each node in Fig. 3 are shown
in Table 2. From these results we find that the atmospheric
pressure is independent, the dew-point temperature and hu-
midity are influenced eath other the vapor pressure are in-
fluenced by temperature and humidity.

6. Conclusion

We describe an algorithm for constructing directed net-
works from multivariate time series based on the RAR
modeling technique. The strong point of this method is
that it enables us to extract the hidden relationship among
dynamical components from a dynamical system-wide per-
spective even if the time series do not have large values of
cross correlation.
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