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Abstract—Generalized modeling (GM) can be
used to explore the dynamics of large, complex net-
works of nonlinear dynamical elements. Importantly,
the interaction terms in the corresponding dynamical
systems do not need to be fixed but can be expressed as
general (i.e., unspecified) functions, describing a large
class of different conventional models. A normalization
procedure is then used to derive the Jacobian matrix
governing the dynamics close to all steady states in
the whole class of models. By GM the Jacobian ma-
trices can be expressed as functions of parameters that
have a well defined interpretation in the context of the
respective application. By an ecological example, we
show how GM can be used to obtain meaningful in-
formation on the dynamics on networks comprising 50
variables and thousands of parameters.

1. Introduction

Many systems in nature, ranging from the biochem-
ical reactions inside cells to societies and ecosystems
can be described as networks of interacting factors
[1, 2]. Today the structure of many of these networks
is known or purported, offering an opportunity to gain
detailed insights in their functioning and failure. How-
ever, the functioning of a complex regulatory networks
is often linked more closely to the network’s dynam-
ics than to the structure [3]. Extracting the dynamics
supported by a network with given structure is there-
fore a central goal for theory [4–9].

Here we focus on the approach of generalized mod-
eling (GM) by which certain features of the dynamics
of a system can be extracted efficiently and robustly.
GM was first applied in [10] and was subsequently pro-
posed as a general method for the analysis of nonlinear
systems in [11]. Subsequently, it was applied to a wide
range of different topics including cell signaling [12–
14], metabolism [15–18], ecology [11, 12, 19–27], laser
physics[11], epidemiology [28] and history [11, 12]. In
systems of ordinary differential equations [11] and par-
tial differential equations [25], GM can determine the
stability of steady states, detect the local bifurcations
in which the stability is lost, identify parameter re-
gions where complex dynamics are likely [21], and also
has potential applications in model reduction [27].

2. Modeling approaches: a motivation

Investigation of the dynamics of regulatory networks
faces three major obstacles: The networks of inter-
est are typically large and heterogeneous, with net-
work nodes corresponding, for instance, to metabo-
lites with very different chemical properties. Further-
more, the mathematical functions describing processes
in the network are often strongly nonlinear and cause
dynamics on many different time scales. Finally, there
is typically a high degree of uncertainty, which is re-
flected in most models by a (potentially large) number
of unknown parameters.

For the analysis of biological networks, methods
from network science and spectral graph theory have
recently received much attention. These methods con-
sider the network as an abstract graph and use sta-
tistical properties such as the number of connections,
the occurrence of certain network motives, and the
length and path of shortest connections between pairs
of nodes [1]. Although providing certain general in-
sights into the dynamics of the network, this approach
cannot easily make use of specific biological insights,
such as the heterogeneity of nodes.

For incorporating specific knowledge and formulat-
ing detailed predictions and hypotheses, networks are
typically modeled as a dynamical systems, where each
network node corresponds to a dynamical variable.
The time evolution of these variables is then governed
by a system of ordinary differential equations (ODEs).
The task of analyzing the dynamics of a complex net-
work is thus mapped to the analysis of a large nonlin-
ear dynamical system.

By far the most common approach to model analy-
sis is simulation. However, for the investigation of the
long term behavior this is fundamentally inefficient be-
cause detailed information on the transient dynamics,
which is later discarded, is obtained at a high compu-
tational cost.

Because of the high degree of uncertainty involved in
most models, one would ideally wish for an analytical
method that can reveal insights without requiring the
researcher to fix the parameters to specific values. In-
deed, applying the tools of dynamical systems theory
[29] can reveal the bifurcation points, i.e., the critical
points in parameter space, where qualitative changes
in the long-term dynamics occur. This conventional

approach to model analysis starts typically with com-
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putation the steady states of the model, where all vari-
ables remain constant in time. After a small perturba-
tion from the steady state, a system may either return
asymptotically or depart entirely to approach a differ-
ent attractor. In the former (latter) case the steady
state is called asymptotically stable (unstable). The
stability of a given steady state is analyzed by com-
puting the Jacobian matrix, which constitutes a lo-
cal linearization of the dynamical system. The steady
state is asymptotically stable if all eigenvalues of the
corresponding Jacobian have negative real parts. If
changes in parameters cause one or more eigenvalues
to acquire positive real parts the stability of the steady
state is lost in a local bifurcation. Investigating the Ja-
cobian matrices corresponding to the steady states of
the model can therefore analytically reveal the critical
parameter values at which the system departs from
stationary behavior.

Beyond the basic steps described above further tools
of dynamical systems theory may reveal boundaries of
more complex dynamics, such as bifurcations of limit
cycles and tori. However, even the basic steps outlined
above can present a considerable challenge. In particu-
lar the first step, the computation of steady states can
be prohibitively difficult if the system contains more
than three or four dynamical equations. Even numer-
ical extensions of the analytical procedure frequently
fail in the analysis of heterogeneous dynamical net-
works with more than, say 20, nodes.

The mathematical difficulties, of the conventional
approach, which mainly arise from the computation
of steady states, are circumvented in random matrix

models [30]. The central idea of this approach is that
the Jacobian of a sufficiently complex dynamical sys-
tem can be modeled as a random matrix. Because
of their simplicity random matrix models can often be
investigated analytically even for large systems. More-
over, a random matrix model does not require the re-
searcher to restrict the underlying processes to a spe-
cific functional forms. On the one hand, formulating a
random matrix model thus requires less assumptions
and can thereby provide more robust insights. On
the other hand, the abstract nature of random ma-
trix models makes answering specific questions often
very difficult.

3. Generalized Modeling

GM offers an intermediate way between conven-
tional and random matrix models. Specifically, GM
comes close to the generality and efficiency of random
matrix models, while offering interpretability compa-
rable to conventional models. Below we illustrate the
approach of GM by discussing the key ingredients of a
general food web model that has recently been inves-
tigated [11, 24].

As a first step consider just a single biological pop-
ulation X , changing in time due to biological repro-
duction S and mortality M , leading to the dynamical
system

d

dt
X = S(X) − M(X). (1)

Because our focus is on systems where little informa-
tion is available, we avoid restricting S and M to spe-
cific functional forms. The aim of our analysis is to
determine the conditions under which a steady state
in the system is stable. Although we cannot compute
steady states at the desired level of generality, we can
formally denote a steady state under consideration as
X∗. We further denote the rates of the two processes
in X∗ as M∗ = S∗. We then normalize the system
by introducing x = X/X∗, m(x) = M(X)/M∗, and
s(x) = S(X)/S∗. Using the normalized variables and
functions the model can be written as

d

dt
x = α(s(x) − m(x)), (2)

where α = S∗/X∗. In the normalized variables the
steady state under consideration is at x∗ = 1, we can
therefore write the corresponding Jacobian as

J = α(sx − mx), (3)

where sx = ∂s(x)/∂x|1 and mx = ∂m(x)/∂x|1 are
coefficients from the linearization.

So far we have succeeded in writing the Jacobian
corresponding to an arbitrary steady state of the sys-
tem as a function of the constants sx, mx, and α. The
central insight of GM is that these constants can be
treated as unknown parameters and have in general
a well-defined meaning in the context of the model:
The parameter α denotes the per-capita growth and
mortality rate in the steady state. It is therefore
simply the inverse of the life expectancy of an in-
dividual in the population. The parameters sx and
mx are so-called elasticities, logarithmic derivatives
of the original functions in the steady state. For in-
stance sx = ∂ log S/∂ log X |∗. This implies that if S is
any power-law AXp, then the corresponding param-
eter is sx = p. In contrast to conventional param-
eters, e.g. half-saturation constants, elasticities can
be directly measured in data observed in the steady
state and do not require reference to an artificial state
(e.g. the half-saturation point).

In the one-dimensional example considered here one
can directly read off the single eigenvalue, λ = α(sx −
mx), of the Jacobian. We can therefore conclude that
in every system of the form of Eq. 1 every given steady
state is stable if the elasticity of the mortality in the
steady state exceeds the elasticity of the reproduction.

Essentially the same procedure applied above can
also be used to study much larger sytems. In the re-
mainder of this paper we discuss three complications
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that may arise in such larger systems. The most harm-
less of these is encountered when equations of motion
contain more than two terms. Consider for instance
the example

d

dt
X = S(X) − M(X) − F (X, W ), (4)

which is analogous to Eq. 1, except that we have in-
cluded an additional loss term describing predation
by a predator W . Typically, W will follow its own
equation of motion, which we ignore here. Applying
essentially the same procedure as above, we find the
normalized system

d

dt
x = α(s(x) − βm(x) − β̄f(x, w)) (5)

where α = S∗/X∗ = (M∗ + F ∗)/X∗, β = M∗/(M∗ +
F ∗), and β̄ = F ∗/(M∗ + F ∗). Here, we had to
introduce the new parameter β and its complement
β̄ = 1 − β weighting the different types of losses. In
words, β̄ is the probability that an individual will even-
tually be eaten and β the probability that it will live
until its natural death.

In general, the normalization of a dynamical equa-
tion containing N terms will require introducing N−1
parameters. It is generally advantageous to introduce
one parameter (α) describing the per-capita turnover
rate and N − 2 parameters (β) weighting the contri-
butions to the total gain and loss rates, respectively.

A second more subtle complication is for instance
encountered in a model where X is a predator feeding
on two prey populations Y and Z such that

d

dt
X = S(X, Y, Z) − M(X) (6)

When we carry out the normalization procedure, we
end up with a Jacobian containing the elasticities sy =
∂s/∂y and sz = ∂s/∂z describing the sensitivity of
the predation rate to the size of the prey populations.
However, ecological knowledge may tell us that the two
elasticities are not unrelated. For instance if one of the
two species were very abundant then the sensitivity of
the predation to the size of the rarer prey population
is greatly reduced because the predator is likely to be
saturated from a encounters with the abundant one.

Insights as the one described above can be inte-
grated into a previously derived GM by an iterative
refinement procedure. Suppose for instance that be-
yond what is stated in Eq. (6) we know predation
to depend only on the sum of the sizes of the two
prey populations, i.e. S(X, Y, Z) = S(X, T ), where
T = Y + Z. The algebraic equation for the total
amount of prey, T , can be normalized like the dif-
ferential equation, yielding t = γy + γ̄z, where the
parameters γ = Y ∗/(Y ∗ + Z∗), γ̄ = 1− γ measure the

relative contributions of the two prey species. Using
this new relation we can now write

gy =
∂s

∂y
=

∂t

∂y

∂s

∂t
= γgt (7)

and analogously gz = γ̄gt, where gt is now the elastic-
ity of the predation rate with respect to T . By sub-
stituting the equations for gy and gz we can rewrite a
previously derived Jacobian in terms of the new pa-
rameters incorporating the additional insight on the
dependence of gy and gz. Although this refinement
does not generally reduce the number of parameters
in a GM it often facilitates the interpretation of re-
sults.

The final and perhaps most obvious complication
encountered in larger models is having more dynami-
cal variables and hence more equations of motion and
larger Jacobians. In this case the normalization pro-
cedure is applied to all of the equations of motion.
For large systems containing tens or even hundreds of
equations, the manual work can be reduced by using
the matrix formalism proposed in [17]. When deal-
ing with GMs of large systems the main challenge is
therefore to extract information from large Jacobians.
Using the method described in [10] analytical compu-
tation of the local bifurcations is feasible for systems
of up to 10 dynamical variables. Furthermore, a nu-
merical procedure that is applicable to larger system
is described in [12].

In large systems identifying the decisive parameters
having a strong impact on stability can be a challeng-
ing task. In GMs this is often accomplished by a Monte
Carlo sampling of the parameter space: We create a
large ensemble of parameter sets, where each parame-
ter in each set is randomly chosen. In the second step
we compute the stability of the steady states corre-
sponding to the random parameter sets by substitut-
ing one set at a time into the Jacobian and numerically
computing the leading eigenvalue of the matrix that is
obtained. To each parameter set we assign a stability
value qi, which is 1=stable if the leading eigenvalue is
negative and 0=unstable otherwise. We can then esti-
mate the impact of a given parameter, say mx, on sta-
bility by computing the correlation between the values
of mx and qi in the ensemble. More detailed insights
can be gained for instance by plotting a histogram of
the fraction of stable states found, over one of the pa-
rameters [17, 24].

The analysis described above profits greatly from
the efficiency of GMs. Because the computation of
the leading eigenvalue of a matrix is much faster than,
for instance, the simulation of the corresponding dy-
namical system very large ensembles can be studied.
For instance in [24] approx. 1011 sample parameter
sets were used for analyzing a 50-dimensional systems
containing several thousand parameters.
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