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Abstract—Digital state feedback controllers
are frequently used in DC-DC converters when
high/optimal performance is required. In this paper
we investigate the nonlinear behavior of such systems
when the feedback control law is a discontinuous
function of the location of the state vector in the state
space. It is shown that the well known problem of
chattering that appears in these controllers (e.g. in
Model Predictive Control - MPC) is due to a border
collision between the fixed point of the nominal period
one orbit and the borders that define the areas that
the specific gains are utilized, and forces the converter
to exhibit high current ripple that can deteriorate the
system’s performance. The exact switched dynamical
model of the system is described along with the three
switching manifolds in the state space and through
that a detailed analysis of the border collision that
causes the chattering and the high current ripple is
presented. Finally, a methodology is proposed that
can lead to a design procedure that completely avoids
this problem. The latter can be taken into account
when advanced controllers are employed in order to
guarantee the optimal behavior of the system.

1. Introduction

DC-DC converters are used in numerous applica-
tions ranging from simple domestic appliances to mo-
bile phones, laptops and areas that require high perfor-
mance like military and aerospace systems. The main
task of such a power circuit is to regulate the voltage
and/or current of its output despite fluctuations in its
input. When there is a need to increase the input
voltage, a boost converter is usually employed (even
though there are other converters that can be used
for that) which uses two electronic switches that can
either be both set to OFF or they can operate com-
plementary, i.e. when one switch is OFF the other is
ON. Hence the converter toggles between three differ-
ent topologies in such a way that boosts the input volt-
age [1]. The nonlinear dynamics of DC-DC converters
have attracted a lot of interest from the academic com-

munity [2, 3] and it is now considered to be a mature
topic that is also embraced by industry. The main is-
sue with such systems is the occurrence of high current
ripple that appears when a bifurcation happens and
this can greatly degrade the efficiency and lifetime of
the converter. There are 3 main types of bifurcations
that can take place in these converters: a) smooth (pe-
riod doubling, Neimark-Sacker and Saddle-Node bifur-
cation) b) an interaction between smooth bifurcations
[4] and c) nonsmooth bifurcations (also called border
collisions) where a fixed point collides with a border in
the state space [5]. Despite the large volume of work
on the bifurcation analysis of DC-DC converters, lit-
tle or no work has taken place when the converter is
being controlled by an advanced type of controller like
state feedback. These controllers are used when high
performance is required and the tuning method is usu-
ally based on methods like MPC [6] and Constrained
Stabilization [7]. These techniques can lead to either
fixed or switching control laws where the vector fields
depend on the location of the state vector in the state
space. In [8] the authors made a first attempt to ex-
plore the various bifurcation phenomena that appear
when digital state feedback controllers are used. It was
shown that it is possible to have a range of undesired
phenomena that can greatly deteriorate the operation
of the converter. This work was further elaborated in
[9] where various bifurcation phenomena were taken
into account in the design of efficient and robust state
feedback controllers. In this paper we further explore
the nonlinear behavior of boost converters that em-
ploy switching state feedback controllers. This creates
multiple switching manifolds in the state space where
it is possible to have border collisions when a fixed
point hits them. This border collision is the expla-
nation behind the well known problem of chattering
that frequently appears in converters that use MPC
and create large limit cycles of high periodicity. Even
though an MPC controller creates multiple switching
manifolds in the state space, in this work only one
switching manifold is added in order to simplify the
analysis and to clearly demonstrate the effect of the
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aforementioned border collision. The last part of the
paper focuses on finding ways to overcome this prob-
lem. As a complete design methodology cannot be
fully presented (due to space limitations) an analysis
of how this work can lead to robust controllers that
guarantee the avoidance of chattering is included.

2. System Description

The schematic diagram of the boost converter is
shown in Fig. 1 assuming ideal components. Math-
ematically, and irrespectively of the controller that is
chosen, the dynamical model of the converter is given
by the piecewise smooth ODE shown in (1), where the
two states are chosen to be the inductor current iL and
the output or capacitor voltage vc, i.e. x = [vc iL]

T .

ẋ =

 A1x+B1u, (S,D)=(ON, OFF);
A2x+B2u, (S,D)=(OFF, ON);
A3x+B3u, (S,D)=(OFF, OFF).

(1)

A1,3 =

[
−1/RC 0

0 0

]
, A2 =

[
−1/RC 1/C
−1/L 0

]
, B1,2 =[

0
1/L

]
, B3 =

[
0
0

]
, u = Vin

 

Figure 1: Schematic diagram of a digitally controlled
boost converter.

In order to toggle between the three states of the
two switches, an external clock is used with period T .
At the beginning of each clock cycle the state of the
switches is set to (ON, OFF). The switches remain at
this state until t = d × T , where d is the duty cycle.
In this work a digital state feedback controller is used
and hence the duty cycle is defined by (2).

d = [k1 k2]× (x(nT )− xref ) + dss (2)

where

xref =

[
Vref + T (Vref − Vin/2RC)

Iref − VindT/2L

]
(3)

and dss is the steady state desired duty cycle i.e. if the
error is vanished at steady state conditions we have
d = dss.

The third state of the switches i.e. (OFF, OFF),
takes place if the inductor current becomes zero and
due to the diode stays off until the end of the clock

cycle; this mode of operation is called ”discontinuous
conduction mode” (DCM). Regardless of the state of
the switches ((OFF, ON) or (OFF, OFF)) at the be-
ginning of the next clock cycle the switch state is set
again to (ON, OFF) and the whole operation is re-
peated. In the state space the transition from the
switch state (ON, OFF) to (OFF, ON) and then to
(OFF, OFF) is being described by two switching man-
ifolds given by the following smooth scalar equations1:

h1 = −t/T + [k1 k2]× (x(nT )− xref ) + dss (4)

h2 =
[
0 1

]
× x(t) (5)

In [8] the gain vector and the value of dss were as-
sumed to be constant but here they depend on the
location of the orbit in the state space, hence this de-
fines another switching manifold given by:

h3 =
[
a b

]
× x(nT )− c (6)

and [k1 k2] =

{ [
k1A k2A

]
, if

[
a b

]
× x(nT ) ≤ c;[

k1B k2B
]
, if

[
a b

]
× x(nT ) > c.

Similarly the value of dss is dssA and dssB above and
below the border respectively2.

Care has to be taken here as the first and third
switching manifolds depend on the sampled state vec-
tor and the second on the continuous state vector. As
a switching occurs when the continuous orbit hits a
manifold these expressions have to be modified; in or-
der to do that we use the uniqueness and existence
theorem of differential equations [9]:

x(t) = eA1tx(nT ) +

∫ t

nT

eA1(t−τ)

[
0

Vin/L

]
dτ

or

x(nT ) = (eA1t)−1

(
x(t)−

∫ t

nT

eA1(t−τ)

[
0

Vin/L

]
dτ

)
(7)

Therefore, the complete mathematical model of the
system is given by (1), along with the expressions
of h1, h2 and h3 and (7). In this work the cho-
sen gains are k1A = 0.0443, k2A = −0.2324 and
k1B = 0.0482, k2B = −1.5886, while dssA = 0.5 and
dssB = 0.1. The switching manifold h3 for simplicity
reasons was chosen to be parallel to the y − axis, i.e.
a = 0, b = 1; the value of c = Imax is chosen as the
bifurcation variable.

1At t = 0 there is a transition from (OFF, ON) or (OFF,
OFF) to (ON, OFF) but as this depends on time and not on
the value of the state vector, it does not need to be included in
the analysis.

2In (6) the switching manifold is defined as a straight line
(based on the values of a, b and c) since all advanced switching
controllers such as MPC employ a state space partitioning where
all regions are polytopes.
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3. Chattering and Border Collision

As it has been described in the previous section the
normal boost converter has one switching condition
based on the location of the state vector when the
switch state changes from (ON, OFF) to (OFF, ON)
(switching manifold h1) and another one when it goes
into DCM (switching manifold h2). A third condition
is imposed in this work as the feedback law changes
when the inductor current is higher than Imax (switch-
ing manifold h3). In order to see the effect of the last
switching manifold the bifurcation diagram of Imax is
plotted for values between 0.481A and 0.485A. In Fig.
2 we see that for high values of Imax there is a unique
period 1 orbit and then at approximately 0.483A there
is a sudden transition to a much higher periodic orbit
with a much bigger limit cycle. From this figure we
can also see that this bifurcation happens when the
fixed point hits the switching manifold defined by h3,
i.e. when the fixed point hits the border Imax. In Fig.
3a we see the limit cycle in the state space and as Imax

is decreased (in the figure shown from 0.5A to 0.49A
and then to 0.4835A) we see that the border described
by h3 comes closer and closer to the fixed point. At
some point there will be a collision and as it can be
seen by Fig. 3b after that we have a new large limit
cycle with high periodicity. A similar picture can be
seen in Fig. 4. This phenomenon in the nomenclature
of control systems theory is called chattering and as it
can be seen here it is due to a border collision.
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Figure 2: Bifurcation diagram. The black dashed line
is the line iL(n) = Imax
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Figure 3: Limit cycle as Imax approaches the fixed
point.
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Figure 4: Current response when Imax is 0.4835 and
0.483.
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Figure 5: Bifurcation diagram with dssA = 0.5 and
dssB = 0.4.

4. Avoidance of Chattering

In this section we will present ways to avoid the
chattering in this simple case and discuss how this
can be extended to more complicated controllers (like
MPC) that create multiple manifolds and hence the
phenomenon of chattering can be even more severe.
In order to do that we will start by answering the
following four questions: a) can we predict exactly
where/when the border collision occurs? b) for what
values of the bifurcation variable does this occur? c)
will we always have chattering when the border colli-
sion happens? and d) what can be done in order to
avoid this phenomenon.

The first two questions are easily answered by cal-
culating the fixed points of the converter for the two
values of dss before and after the switching3 using (3),

which are
[
10.1250 0.4833

]T
and

[
8.4167 0.3339

]T
.

Hence, the borders where the chattering occurs are be-
tween 0.3339 and 0.4833 which is also shown in Fig.
5. The third question can be answered by investigat-
ing the direction of the vector fields before and after
the switching. As in this case both vector fields are
directed towards h3 it is expected that sliding will oc-
cur on that surface. Based on this observation, it is
possible to answer the fourth and probably the most
important question, i.e. how can we avoid the occur-

3In order to improve the visibility of the figures, in this sec-
tion we use dssB = 0.4 instead of 0.1.
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rence of chattering. The simplest answer is to avoid
hitting the border, i.e. setting Imax to a value that
we do not have a border collision, but in this case the
benefit that we have of using multiple control laws is
lost. Another approach is to make sure that when the
border collision occurs, the vector fields do not point
at the same switching manifold. In Fig. 6 we see the
response of the system similarly to Fig. 3 where the
values of dssB , xref are modified appropriately so that
that the two vector fields have the same direction, for
Imax = 0.4 4.

This approach could be utilized by controllers such
as MPC, where multiple switching manifolds are cre-
ated in order to optimally drive the trajectory in the
state space.

9.1 9.2 9.3

0.4

0.41

0.42

0.43

0.44

V
c
, V

i L, A

I
max

=0.4

d
ssB

=0.4

d
ssB

=0.452

Figure 6: Limit cycles for Imax = 0.4 and two different
values for dssB , xref .

5. Conclusions

In this paper, we present the bifurcation behavior
of a boost converter under a digital switching state
feedback controller. This controller can be found in
demanding applications that employ advanced types
of control strategies, such as MPC. It is proven that
the well known problem of chattering (that can greatly
deteriorate the performance of the system) is due to
a border collision bifurcation. In order to avoid this
problem we either have to ensure that the collision
does not occur or that chattering conditions are not
met. Further work will include the study of the in-
teraction of this border collision with the smooth bi-
furcations previously investigated by the authors in
[8] with an ultimate goal of producing a new design
methodology similar to [9] that can guarantee an opti-
mum behavior of the system in wide operating region.
Also, the incorporation of the aforementioned strat-
egy of avoiding chattering in MPC algorithms must
be further studied.

4It can be easily found from (3) that, for Imax = 0.4, in
order to change the second vector field’s direction we need to set
dssB ≥ 0.452, provided that xref is also modified accordingly.
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