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Abstract–Complex network theory has been applied to 

solving practical problems from different domains. In this 

paper, we present a general framework for complex 

network applications. The keys of a successful application 

are a thorough understanding of the real system and a 

correct mapping of complex network theory to practical 

problems in the system. Despite of certain limitations 

discussed in this paper, complex network theory provides a 

foundation on which to develop powerful tools in 

analyzing and optimizing large interconnected systems. 

 

1. Introduction 

In the past fifteen years, the underlying network 

structure of complex systems has attracted extensive study 

from physics and computer science communities. The 

structural properties of complex networks in engineering 

infrastructure, social communities, biological systems, and 

financial systems are closely examined. Important 

universal properties such as scale-free structure, small-

world phenomena, community structure, and dynamical 

processes are found in complex networks from multiple 

domains [1]. Efforts have also been made to apply 

complex network theory to not only describing the 

topological and dynamical properties of real-world 

systems, but also to solving practical problem and even re-

designing the system for better performance. In this paper, 

we present a general framework for applying complex 

network theory in solving real-world problems. First, we 

review the network construction process of finding the 

abstract representation of real-world systems. Then, we 

review the existing analysis of network properties from 

different scopes. Finally, we discuss the feasibility of 

using complex network theory to solve real-world 

problem, including its capability and its limitation. 

 

2. Construction of Complex Networks 

The fundamental pre-requisition of a successful 

application of complex network theory is finding the 

underlying network structure of complex systems. A 

network is a set of nodes connected by a set of edges. 

Most complex systems consist of a collection of 

components which interact with each other. For instance, 

the Internet is a collection of computational devices 

connected by wires or wireless signals. Here, the devices 

are the nodes in the network and the physical connections 

are the edges in the network. Computers and devices 

communicate with each other by exchanging data 

packages. However, the representation of nodes and edges 

may be more flexible for many complex systems. For 

example, in the biological system, each species can be 

viewed as nodes in the network, while the predator-prey 

relationship and mutual-dependence relationship shape the 

edges between each species in a food web. In a 

microscopic perspective, each living organic intake food 

and generates energy through a chemical process called 

metabolism. In the metabolism process, chemical 

substances react with each other and transform into new 

chemical substances. In the metabolic networks, the nodes 

are the chemical substances and the edges are the possible 

transformation from one substance to another. Moreover, 

different complex systems can overlap and interfere with 

each other in real-life, forming a network of networks. For 

example, a social network is a network of people 

connected by family ties, collaboration and friendships. In 

modern life, people keep up with friends and maintain 

their social relationships by using the Internet – a network 

of computer and smart phones. Furthermore, the complex 

network of electrical transmission supplies the power that 

keeps the Internet running. Each of the above mentioned 

networks are closely coupled with each other. Finding the 

underlying network structure poses a great challenge yet 

lays the groundwork of applying network theory to 

solving practical problems. 

 

3. Analysis of Network Properties 

The properties of complex networks can be examined 

from different scopes. 

 

3.1. The Macroscopic View 

In the macroscopic view, the statistical properties of the 

complex networks, such as the degree distribution, the 

community structure and the structural robustness, are of 

particular interest.  

The degree distributions of complex networks of real 

systems have shown a very interesting universal 

characteristic, i.e., they all follow the Zipf’s law, also 

known as the power law, , where  is known as 

the power-law coefficient. The power-law coefficients of 

most complex systems fall between 2 and 3. For example, 

for the Internet, ; for the  scientific collaboration 

network,  [2]. The power-law degree distribution 

reveals the winner-takes-all nature of the complex system. 

That is, most of the edges in the networks are connected to 

only a few number of nodes. 
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Many complex networks are actually loosely connected 

by several densely connected sub-networks. The sub-

networks are called community structure. The detection of 

community structure in complex networks generally takes 

two different approaches. The first approach is the “top-

down” approach, where algorithms search for the densely 

connected sub-networks in the network, be them cliques 

or sets of nodes with maximum modularity. The second 

approach is the “bottom-up” approach, where specific 

edges, known as the “weak-ties” are removed from the 

network, while the remaining disconnected sub-networks 

are the communities in the network. The weak-ties may 

refer to the minimum-cut of the network, or edges with 

largest betweenness centrality [3]. 

In sociology, the term “assortative”, also known as 

“homophily”, refers to the tendency of individuals with 

similar characteristics, e.g., age, nationality, religion, etc., 

know or interact with each other. In complex network 

theory, assortative mixing specifically refers to the bias of 

preference that nodes with similar degrees are connected 

together. While its opposite term, disassortative mixing, 

exists in biological and technology networks such as the 

Internet and food webs [4].  

 

3.2. The Microscopic View 
The analysis of complex network from the microscopic 

view focuses on single nodes or the combination of a few 

number of nodes. 

In social networks, there is a likelihood that two friends 

of a person are also friends themselves. In complex 

network theory, the clustering coefficient  is a measure 

of the likelihood of closed triplets, i.e., three nodes that 

are fully connected. Clustering coefficient represents the 

redundancy of edges that keep the network connected. 

Social networks show large clustering coefficients, for 

people tend to form a closed society, e.g., family, school, 

working environment, etc. While in technological 

networks and infrastructures, the clustering coefficients 

are small, because the redundant links between nodes 

increase the cost of the systems [1]. 

Network motifs are defined as recurrent and 

statistically significant small-sized sub-graphs. The 

network motifs are usually related to the functional 

properties of the network. Despite of this, their detection 

is computational challenging. Due to the computational 

complexity of the algorithms for calculating the statistical 

significance of a motif, the sizes of motif reported in 

existing literature are usually limited by 10 [5]. 

The study of structural properties of individual nodes 

reveals the importance of a component in the system. The 

measurements usually take consideration of the ego-

network structure of the node. The most straight-forward 

measure of importance of a node is the number of edges 

connected to it, i.e., its degree centrality. However, the 

degree is not a sophisticated measure of node importance 

in many cases. Other measures based on the structural 

properties of the ego-network of each node are proposed. 

For example, the number of indirect neighbors of a node 

can also be used to extend degree centrality [6]. 

Betweenness centrality of an importance measure of the 

node. It is calculated based on the number of shortest 

paths of all pairs of nodes that include this node. The 

importance of a node sometimes depends on the 

importance of its neighbors. Based on this idea, the 

PageRank algorithm is proposed to rank the importance of 

webpages. The PageRank algorithm, among many other 

algorithms, are considered related to the eigenvectors and 

eigenvalues of the adjacency matrix of the complex 

networks [7]. 

 

2.3. The Dynamic View 
Most complex systems are not static but rather dynamic. 

On one hand, the topology of complex networks changes 

over time. On the other hand, dynamical processes are 

also taking places on the networks. 

A traditional area of study on topological dynamics of 

complex networks is the robustness of the network. By 

gradually removing random edges from the network, a 

strongly connected network may transform into several 

unconnected sub-networks. The critical proportion of 

edges removed in order to disconnect the sub-networks 

reflects the topological robustness of the network. Study 

has found that real networks with scale-free structure 

display great robustness against random edge removal. 

However, the real networks are more vulnerable to 

removal of important, rather than random, nodes and 

edges. The strongly connected network can be quickly 

disconnected into several sub-networks [8]. 

Complex networks play a crucial role in carrying 

contents and facilitating communications. For example, 

information spreads on the Internet through social 

networking services, disease and behavior spreads in 

social community forming epidemics, etc. Understanding 

the mechanism of content spreading is the foundation of 

predicting epidemic spreading and identifying super 

spreaders. The traditional model of epidemic spreading is 

SIR (susceptible-infected-recovered) model. This model 

assumes that a population can transform with a certain 

probability from the susceptible state to the infected state 

and from the infected state to the recovered state. The SIR 

model is a simplified model of epidemic scenario. Content 

spreading on complex networks takes similar form to the 

epidemic spreading in social community. 

One of the ongoing discussion in theoretical complex 

network study is the adaptive co-evolution of network 

topology and dynamical processes. On one hand, the 

underlying network structure strongly affects the 

dynamical process such as communication and epidemic 

spreading. On the other hand, the dynamical process may 

also alter the topological structure of the complex 

networks. Up to now, the problem has been tackled from 

several angles, such as game theory on network models, 

self-organization networks and opinion formation in social 

networks. However, the adaptive co-evolution will pose a 

continuous challenge to network scientists [9]. 
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4. Solving Real-world Problems 
In this section, we propose a general methodology of 

applying the theory to solving real-world problems. The 

key of a successful application is the correct mapping of 

network properties to practical problems. Finding such a 

mapping requires an in-depth understanding of the real 

system as well as a systematical knowledge of network 

science. Here we outline some typical systematical 

problems that are particularly suitable being solved by 

complex network theory. 

 

4.1. Re-discovering System Structure 
An epidemic model is a simplification of disease or 

behavior spreading. The epidemic threshold (or 

reproduction number) refers to a certain probability that 

an epidemic occurs only if the infect probability of the 

disease or behavior is larger than the epidemic threshold. 

In the SIR model, assume  the spreading rate, i.e., the 

transform probability from susceptible state to infected 

state and  the removal rate, i.e., the transform probability 

from infected state to recovered state, in order to ensure 

an epidemic outbreak, the following condition has to be 

met: 

                                 ,                             (4) 

where  is the average degree of nodes in the 

underlying transmission network. In traditional epidemic 

research, social communities are considered as fully 

connected networks or random networks. In these 

networks, . Therefore the 

epidemic threshold exists. However, recent study has 

shown that human contact networks are neither fully 

connected networks nor random networks, but rather 

scale-free networks (or at least networks with long-tail 

degree distribution). In scale-free networks, some hub 

nodes can have very large degree, hence  and 

. In this case, the epidemic 

threshold does not exist, and that the disease may have a 

break out even if the infectious probability is low [10]. 

The discovery of scale-free property of the social 

community has fundamentally changed the understanding 

of immunization strategy. New immunization policies 

have been proposed in order to accommodate to the 

change [11]. 

 

4.2. Categorizing System Components 
Public companies are traded in the stock markets. The 

companies are usually categorized into sectors by their 

nature of business, e.g., real estate sector, financial sector, 

technology sector, etc. Spreading investments across 

different sectors are believed to decrease the systematic 

risk of the portfolio. However, the existing sectoring 

criteria are sometimes insufficient since modern 

companies tend to diverse their business into different 

sectors. A robust sectoring method is required in modern 

investment activities. One of the solutions is the 

community detection algorithms in complex network 

theory. First, a stock market network must be constructed. 

The nodes in the network are traded companies. Every 

pair of the nodes are connected by an edge. The weight of 

edges are given by the correlations of the time series of 

stock returns. The compartments of stock markets 

sectored by community detection algorithms provide 

additional insights into the difference among companies 

within a same traditional sector [12].  

 

4.3. Importance Ranking of System Components 
We can find the need of ranking components in the 

system for practical usage in many scenario. For example, 

a user usually only reads the first two or three results 

returned from a search engine, an advertiser can only 

afford advertisement in one or two influential spreaders in 

social media websites, etc. By modeling the complex 

systems to networks, the importance ranking of individual 

components can be revealed by its ego-network structure. 

PageRank algorithm relates the importance of webpages 

to the eigenvector of the underlying network of the World 

Wide Web. Epidemic models are used to find influential 

spreaders in social networks [13]. In the fight against 

terrorism, critical information carriers are identified by 

calculating the betweenness centrality of each node in the 

terrorists’ social networks [14]. 

 

4.4. Recovering Missing Information 
Complex networks are built from observation data. 

However, the data collection process can be compromised 

by imperfect technology or human error, resulting in 

incomplete data or faulty data. Therefore, recovering 

missing knowledge from existing information is of urge 

need in many practical problems. For example, 

recommender systems use data on past user preferences to 

predict possible future likes and interests. By building a 

bipartite network of user and objects, the structural 

similarities between different users or different objects can 

be calculated. Accurate and diverse recommendation can 

be made by correctly associating users with potential 

objects purchased by similar users. Similar methodology 

can be applied in prediction of protein functions and 

inference of latent terrorist’s relationships [15]. 

 

4.4. Designing Bionic Systems 
Although scale-free networks are robust to random 

failure, an error happened on its important nodes can 

cause cascading failure that could potentially sabotage the 

whole system. For example, the failure of a highly 

connected line could create a regional black-out. On the 

other hand, social network is an example of continuously 

evolving system that exhibits strong robustness even to 

attacks on the most important nodes. Similar to social 

networks, the swarms of fish and flocks of bird also 

possess the ability of self-organizing that can adjust 

stability or maintain synchrony of the system in real-time. 

Electrical engineers have already started to transform the 
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ideal synchronization models and self-organizing models 

learnt from complex network theory to the engineering 

models of power grids. However, the gap between physics 

and practical engineering is still very large and yet to be 

filled [16]. 

 

5. Limitations of Applied Network Theory 

Despite of the fruitful applications of complex network 

theory in solving many practical problems, there are 

certain limitations of the tools. Particularly, the limitations 

are on the oversimplification in modeling complex 

systems with networks. 

For example, the power grid is the largest and most 

complicated infrastructure. Traditional complex network 

analysis of power grid treats generator, user and voltage 

transformer as network nodes, while transmission lines as 

edges. The electrical power are modeled as network flow 

carried by the underlying complex network. However, 

electrical engineers have criticized this model as 

oversimplified. Although synchronization models on 

complex networks, such as Kuramoto model, parallel with 

the power grid in many aspects, there is still much work to 

do in order to apply complex network theory in 

optimizing of electrical transmission systems. 

Another example is discovering the social circles in ego 

networks. In social networks, people are connected by 

multiple types of social relationships, e.g., colleagues, 

friendship, family ties, etc. Discovering the nature of ties 

between users is an important challenge for online social 

services providers. It has been found that community 

detection algorithms that use merely the topological 

properties are not sufficient in inferring the correct social 

circles of users. Other features, such as age, geographic 

location, education background, etc., should be used 

together with topological information of the social 

network to achieve accurate results [17]. 

 

5. Conclusion 

In this paper, we have presented a general framework 

of applying complex network theory to solving practical 

problems. The fundamental step of the application is the 

correct modeling of real systems into networks. By 

analyzing the network structural properties and mapping 

the structural properties to the functionality of real 

systems, complex network theory can be applied to 

revealing of importance of system components, 

identifying compartments in the system, predicting system 

behavior and even redesigning the system to achieve 

better performance and robustness. However, a successful 

application has to meet its challenges in many aspects. 

First, correctly modeling a real system to networks and 

finding the mapping of network property to practical 

problem require an in-depth understanding of the real 

system as well as a comprehensive knowledge of complex 

network theory. Second, oversimplified network models 

may not fully characterize the evolving mechanism of the 

real system. Tools from other academic fields, such as 

nonlinear theory, machine learning algorithms, etc. should 

all be utilized along with complex network theory to 

explore solutions to practical problems. 
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