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Abstract— A multiagent system comprises many agents
that autonomously make decisions to complete a task. Such
a system can perform tasks that are difficult for a single
agent. Formation control is such a task in which multi-
ple agents perform the task of forming an entire shape.
Among various strategies for formation control, cyclic pur-
suit is notable for its simplicity and ability to enable agents
in forming a circle. However, it remains unclear whether
the strategy can be used to realize formations other than
circles. Motivated by this observation, in this study, we
propose a method for enabling agents that adopt the cyclic
pursuit strategy to realize a specific shape. We examined
the effectiveness of the proposed method through numeri-
cal simulations. In the simulations, the proposed method
succeeded in forming a square, star, and heart shape.

1. Introduction

A system in which multiple agents interact with each
other to make decisions and accomplish a task is called a
multiagent system [1]. This system is expected to be ap-
plied to various situations because of its ability of accom-
plishing tasks that are difficult to be achieved by a single
agent and its resilience to failures and disturbances [2, 3].
A typical task for multiagent systems is formation con-
trol [4], in which multiple agents form various shapes or
move while maintaining the shape. Although various con-
trol algorithms for multiagent tasks have been proposed in
the literature [5, 6], many of them rely on the assumption
that agents have dense interaction dynamics. For example,
the method proposed by De Marina et al. [5] requires the
interaction topology of agents to be rigid. One exception
is the cyclic pursuit strategy [7, 8, 9], in which each agent
is assumed to be able to only observe information about
the relative position of the agent moving ahead of it. This
strategy is proved to be able to enable the agents to form
a circle by enabling them to “pursue” the agent moving
ahead of the them. Although this strategy can achieve for-
mation control with limited information, it remains unclear
whether the strategy enables agents to form other shapes.

Motivated by the aforementioned question, in this study,
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we proposed a method for forming desired shapes based
on the cyclic pursuit strategy. In the proposed method, the
dynamics of the agents is based on cyclic pursuit. At each
time, agents calculate its ideal position based on the posi-
tion of the agent moving ahead of it, and shifts to the ideal
position. By repeating this process, all agents can form the
complete required shape.

This paper extends the theory of formation control in
multiagent systems by showing that the cyclic pursuit strat-
egy, which has been regarded to be able to realize only
circles, can realize various kinds of shapes. In addition,
we can gain better understanding of the dynamics of cyclic
pursuit. Furthermore, because the dynamics of cyclic pur-
suit is simple, we expect that formation control using inex-
pensive agents will become possible in the future.

This paper is organized as follows. First, we formulate
the problem studied in this paper in Section 2. In Section 3,
we describe the proposed method. Then, in Section 4, we
evaluate the effectiveness of the proposed method using
three representative shapes. Finally, Section 5 summarizes
the paper and discusses future issues.

2. Problem Statement

In this section, we describe the problem studied in
this paper. We consider a multiagent system in a two-
dimensional plane R2. We assume that the system consists
of N agents. We assign the numbers 1, . . . , N to the agents.
In addition, xi(k) denotes the position of the ith agent at
time k. The objective of the system is to form a complete
required shape by the agents’ distributed decision. The de-
sired shape is assumed to be described by a Jordan closed
curve γ : [0, 1] → R2. For example, if the desired shape is
a square, then we can use γ given by

γ(ξ) =


(1, 4ξ), if ξ < 1

4 ,

(1 − 4(ξ − 1
4 ), 1), if 1

4 ≤ ξ <
1
2 ,

(0, 1 − 4(ξ − 1
2 )), if 1

2 ≤ ξ <
3
4 ,

(4(ξ − 3
4 ), 0), otherwise.

(1)

We provide the space [0, 1] the distance d(·, ·) defined by

d(x, y) = min
(|x − y|, |x + 1 − y|) (2)

for all x, y ∈ [0, 1].
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It is well-established [7] that the aforementioned objec-
tive can be achieved by a multiagent system performing a
cyclic pursuit when γ is the unit circle, that is, the system
converges to the state where all the agents form a circle by
moving on it with the same speed while maintaining equal
distances between two consecutive agents. Notably, the cir-
cle formed by the agents does not necessarily coincide with
the unit circle specified by γ. Therefore, the cyclic pursuit
strategy guarantees the existence of a Jordan closed curve γ̃
representing a circle, potentially different from γ, and func-
tions τ1, . . . , τN from the set {0, 1, 2, . . . } of nonnegative
integers to the interval [0, 1] such that

lim
k→∞

(
xi(k) − γ̃(τi(k))

)
= 0, (3)

and

lim
k→∞

d
(
τn(i)(k), τi(k)

)
=

1
N

(4)

for all i = 1, . . . ,N, where n(i) represents the index of the
agent i’s predecessor agent and is defined by

n(i) =

i + 1, if i < N,
1, otherwise.

(5)

The first equation (3) implies that, asymptotically, an
agent i will move on γ̃ with its position specified
by τi(k). The second equation (4) implies that, under the
parametrization of γ̃ by [0, 1], any adjacent pair (i, n(i)) of
agents travels an equal distance of 1/N (i.e., the length of
interval [0, 1] divided by the number of agents) after a suf-
ficient time from the start of the formation control.

This observation leads to the following question: can
a multiagent system with cyclic pursuit-based interactions
among agents realize a formation other than a circle? We
formulate the problem as follows. First, the dynamics of
the agents are assumed to be based on the cyclic pursuit.
Therefore, each agent is required to determine its own mov-
ing vector using the information about the agent ahead of
it. Specifically, A1) each agent is assumed to be able to ob-
serve the relative position of its predecessor agent. In this
paper, in addition to this information, we assume that A2)
each agent i is aware of its own orientation ϕi ∈ [0, 2π) (i.e.,
the angle of the direction vector measured as a counter-
clockwise rotation from the positive x axis) at any time.
Furthermore, we assume that A3) each agent has knowl-
edge of the desired shape γ. Under these assumptions, we
formulate the problem that we investigate in this study as
follows:

Problem 1. Let γ be a closed Jordan curve. Under as-
sumptions A1-A3, Design a distributed movement law for
each agent such that the positions xi of all the agents sat-
isfy (3) for a closed Jordan curve γ̃ similar to γ and a set
of functions τi : {0, 1, 2, . . . } → [0, 1) (i = 1, . . . ,N) that
satisfy (4).

The following notation will be used throughout this pa-
per. For a real number a > 0, and ⌊a⌋ denotes the largest
integer that does not exceed a.

𝑥!(#)(𝑘)

𝑥#(𝑘)

%𝑥#(𝑘)

: Ideal trajectory
: 𝑣! # %(𝑘 − ℓ)

Figure 1: Schematic of Eq. (12). The black arrow indicates
the movement vector vn(i)1(k − ℓ).

3. Proposed Method

In the proposed method, we first run the cyclic pursuit
algorithm [7] for sufficiently long time. When the multia-
gent system reaches its stationary state, we move to the next
phase where the system attempts to form the given shape γ.
Without loss of generality, we set the time of moving into
the next phase as 0. Therefore, at time k = 0, the agents
are equally spaced. The difference in orientation between
agents is geometrically 2π/N. In other words, the following
equation holds for all agents:

ϕn(i) − ϕi =


2π
N
, if ϕi < ϕn(i),

2π
N
− 2π, otherwise.

(6)

We then describe the configuration of τi such that the
Eq. (4) is satisfied. First, agent i initializes its own τi as

τi(0) =
ϕi

2π
. (7)

Subsequently, each agent updates τi at each time as

τi(k + 1) =

τi(k) + η, if τi(k) + η < 1,
τi(k) + η − 1, otherwise,

(8)

where η ∈ (0, 1) is a tunable parameter. From (6), we can
easily confirm that τi satisfies d(τn(i)(k), τi(k)) = 1/N for all
k. Therefore, Eq. (4) is satisfied.

Next, we describe the movement law of the agents after
time k = 0. One of the movement laws of an agent that sat-
isfies Eq. (3) is xi(k) = γ(τi(k)). However, this movement
law cannot be used because the agent cannot obtain its own
absolute coordinates. Therefore, within the proposed algo-
rithm, each agent determines its moving vector vi(k) in a
distributed manner and updates its own position as

xi(k + 1) = xi(k) + vi(k) + ϵi(k), (9)

where ϵi(k) represents possible disturbances. The vector
consists of two distinct vectors as

vi(k) = vi1(k) + vi2(k), (10)
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where vi1(k) is the vector by which the agents individually
draw the desired shape, and vi2(k) is the vector for achiev-
ing coordination among agents.

First, we define vi1(k) as

vi1(k) = γ̇(τi(k)), (11)

where γ̇ is the derivative of γ. Although this vector vi1(k)
enables each agent to achieve the formation individually, it
is not guaranteed that the trajectories on which each agent
moves coincide. The compensation of the potential differ-
ence is the role of the second vector vi2(k). Within the pro-
posed algorithm, the agent i assume that the agent n(i) is
on the correct trajectory, and construct vi2(k) in such a way
that the agent i can create its own trajectory close to the one
of its predecessor agent, n(i). The agent 1 approaches the
trajectory of the agent 2, the agent 2 approaches the trajec-
tory of the agent 3, and subsequent agents follow suit, with
the agent N moving to approach the trajectory of the agent
1, resulting in the eventual synchronization of all agents’
trajectories. Assuming vn(i)2(k) = 0 and 1/Nη are integers,
agent i can calculate its own “ideal position” as

x̃i(k) = xn(i)
(
k − (Nη)−1). (12)

Using this ideal position, we define the movement vector
vi2(k) as

vi2(k) = α(x̃i(k) − xi(k)). (13)

Because the ideal position defined in (12) is not acces-
sible to the ith agent, we employed the following approxi-
mation in our implementation:

x̃i(k) ≈ xn(i)(k) − (vn(i)1(k − 1) + vn(i)1(k − 2) + · · ·
+ vn(i)1

(
k − ⌊(Nη)−1⌋)). (14)

Our rationale behind this approximation is illustrated in
Figure 1, where the ith agent determines an ideal posi-
tion x̃i(k) by inverting vn(i)1(k), as shown by the black arrow
in Figure 1. Furthermore, agent i can compute the approxi-
mation using only γ̇ and τi(k) because a simple calculation
shows

vn(i)1(k − ℓ) = γ̇(τi(k) + N−1 − ℓη) (15)

for all ℓ ≥ 1.

4. Numerical Simulations

In this section, we evaluate the effectiveness of the pro-
posed method. As described in Section 3, we assumed that
the agents are placed on a circle with equal spacing at the
initial step k = 0. Within the simulation, we set the center
and radius of the circle to be the origin and 15, respectively.
The total number of the agents N was set to 3, η was set to
0.01, and α was set to 0.01. In addition, the maximum step
of the simulation was set to 300. We used the noise term
ϵ(k) in Eq. (10) expressed by

ϵ(k) = 0.1[cos(ωi(k)), sin(ωi(k))], (16)

where ωi(0), ωi(1), and . . . are independent and identically
distributed random variables with uniform distribution on
[0, 2π].

For the desired shape γ, we consider the following three
shapes: a square, star, and heart (see Figure 2). In Fig-
ure 3, we show the trajectories of the agents for each of
the desired shapes. We can observe that each agent grad-
ually moves to draw the desired shape nearly on the same
trajectory.

To quantitively evaluate the accuracy of the formation
control, we measured the distance between the desired

Figure 2: Desired shapes.

Figure 3: Trajectories of the agents when the desired shapes are square, star, and heart. The dots indicate the position of
each agent at the final step.
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Figure 4: Discrete Fréchet distance. The horizontal and the
vertical axis represent the cycle and distance, respectively.

shape and the trajectory drawn by the agents. For this pur-
pose, we used the discrete Fréchet distance [10]. In this
study, because the shape can move parallelly, the distance
was calculated after translating the desired shape to enable
the center of all agents per cycle and the center of the de-
sired shape to be at the same point. One cycle was 100
steps because the value η was equal to 0.01. In addition, in
Figure 4, we show the distance between the desired shape
and actual trajectory in each cycle when the desired shape
is a square. The horizontal axis indicates the number of
cycles and the vertical axis indicates the discrete Fréchet
distance. We can observe that for all agents, the distance
is decreasing. In other words, the trajectories of all agents
are attaining the desired shape. The diagram also suggests
that the trajectory on which each agent moves almost co-
incide. This is because the center of gravity of the shape
drawn by all agents is aligned with the center of gravity
of the desired shape (i.e. all agents are translating the same
amount). Therefore, if the discrete Fréchet distance is small
for all agents, all agents are considered to be on the same
trajectory.

We note that (Nη)−1 is not an integer within the current
simulation. Therefore, the approximation (14) is not neces-
sarily accurate. Nevertheless, the agents were able to com-
plete the task of drawing a required shape. This observation
suggests a certain amount of robustness in the proposed al-
gorithm. The reason for this robustness remains an open
problem for future research.

5. Conclusion

In this study, we propose a method for formation control
based on a cyclic pursuit strategy. In the proposed method,
the agents draw the desired shape using only limited in-
formation about themselves and the agent moving in front
of them. Simulations confirmed that the proposed method
was able to draw some shapes.

Future work will involve demonstrating that arbitrary

shapes can be drawn. In addition, we plan to investigate
the robustness of the system when the number of agents
changes, or when the desired shapes change during the
drawing process.
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