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Abstract— This study presents a novel approach to ad-
dress multi-armed bandit (MAB) problems through the uti-
lization of quantum walks (QWs). QWs exhibit a dis-
tinctive characteristic known as the coexistence of linear
spreading and localization. While this property has been
utilized in various applications, its application to decision-
making is almost untapped. This paper presents an al-
gorithm that leverages the coexisting behaviors of QWs
to tackle MAB problems, which are recognized as one
of the fundamental models in decision-making. By as-
sociating the two fundamental operations of exploration
and exploitation with the behaviors of QWs, this study
demonstrates that the proposed policy outperforms the cor-
responding random-walk-based model.

1. Introduction

A quantum walk (QW) [1] is the quantum counterpart
of the classical random walk (RW), encompassing quan-
tum superposition and time evolution effects. In classical
RWs, a random walker (RWer) probabilistically chooses
the direction to move at each time step, allowing for the
tracking of the RWer’s position at any time step. In con-
trast, QWs do not reveal the precise location of a quan-
tum walker (QWer) during the time evolution; the location
becomes ascertainable only after conducting the measure-
ment. QWs possess a unique characteristic absent in clas-
sical RWs: the coexistence of linear spreading and local-
ization. Consequently, QWs exhibit probability distribu-
tions that significantly differ from the weak convergence to
normal distributions observed in RWs. The former implies
that the standard deviation of the probability distribution
for QWs increases proportionally to the runtime t, which
is quadratically faster than that for RWs. The latter sig-
nifies that the probability remains distributed at a specific
position regardless of the duration of the walk. RWs, on
the other hand, exhibit flattening probability distributions
despite retaining a bell-shaped curve, thus lacking local-
ization.

While this property has captivated various fields and has
been considered for numerous applications, its potential
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Figure 1: Association between the properties of quantum
walks (linear spreading and localization) and the operations
in MAB problems (exploration and exploitation).

application to decision-making remains largely untapped.
This paper introduces novel solution schemes for multi-
armed bandit (MAB) problems [2] employing QWs. MAB
problems entail multiple slot machines, each with an as-
signed success probability representing the chance of a re-
ward. The objective is for an agent, initially unaware of
these probabilities, to maximize cumulative rewards by it-
eratively selecting machines and obtaining probabilistic re-
wards. To make a better decision, it is required to gather
information on success probabilities through a certain num-
ber of selections, which we call exploration. On the other
hand, it is also necessary to spend some rounds to bet on
reliable machines based on acquired data, which we call
exploitation. Balancing these operations, known as the
exploration–exploitation dilemma [3], presents a challenge
in MAB problems. This study addresses this challenge by
leveraging the distinct property of QWs, namely the coexis-
tence of linear spreading and localization. Specifically, we
combine exploration with linear spreading and exploitation
with localization, as illustrated in Figure 1.

2. Quantum Walk on Cycles

We introduce discrete-time quantum walks on a cycle CN

with vertices labeled by the set VN := {0, 1, · · · , N − 1} in
clockwise order, where N is a natural number. It should
be noted that addition and subtraction in VN are modulo N;
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Figure 2: Quantum walks on cycle CN and matrices
P(x), Q(x), and R(x) for time evolution.

i.e., (N − 1) + 1 ≡ 0 and 0 − 1 ≡ N − 1.
Our QW model operates in a compound Hilbert space

comprising the position Hilbert space HP := span{|x⟩ | x ∈
VN} spanned by the computational basis states represent-
ing vertices on CN , and the coin Hilbert space HC :=
span{|−⟩ , |O⟩ , |+⟩} spanned by the computational basis
states corresponding to the internal states. Here, this model
assumes the existence of three internal states: clockwise
(+), anti-clockwise (−), and staying (O), and the states are
represented by the vectors |−⟩ = [1 0 0]T, |O⟩ = [0 1 0]T,
and |+⟩ = [0 0 1]T, where a superscript T on a matrix rep-
resents its transpose. Based on HP and HC, the whole sys-
tem is described by

HPC = HP ⊗HC

= span
{|x⟩ ⊗ |ε⟩ | x ∈ VN , ε ∈ {±, O}}.

Then the total state of our QW at time step t ∈ N ∪ {0}
is represented as follows: for each x ∈ VN , there exists
|ψ(t)(x)⟩ ∈ HC such that

|Ψ (t)⟩ =
∑
x∈VN

|x⟩ ⊗ |ψ(t)(x)⟩ ∈ HPC.

Here, |ψ(t)(x)⟩ is called the probability amplitude vector at
position x ∈ VN at time step t. The initial state is set as

|Ψ (0)⟩ = |Φ⟩ := |s⟩ ⊗ |O⟩

with s ∈ VN . It indicates that QWers start from position s
with probability amplitude vector |O⟩.

Let us now discuss the time evolution of |Ψ (t)⟩. First, we
define a site-dependent unitary matrix C(x) as

C(x) =


− 1 + cos θ(x)

2
sin θ(x)
√

2

1 − cos θ(x)
2

sin θ(x)
√

2
cos θ(x)

sin θ(x)
√

2
1 − cos θ(x)

2
sin θ(x)
√

2
− 1 + cos θ(x)

2



Agent

[STEP 1]

Select with QW

[STEP 2]

Receive Reward

[STEP 3]
Adjust QW-Setting

Environment (N slot machines)

0

x* ?

� 

!(0)

!(1)!( −1)

1 − 1

777 777

777

777

777 777

s

START

#($) ?

Figure 3: Single decision on the quantum-walk-based
model for MAB problems

with θ(x) ∈ [0, 2π) for all x ∈ VN . This matrix C(x) is
called a coin matrix, which governs the variation of the in-
ternal states on x ∈ VN . Next, we define matrices P(x) =
|−⟩⟨−|C(x), Q(x) = |+⟩⟨+|C(x), and R(x) = |O⟩⟨O|C(x).
Using them, the time evolution of |Ψ (t)⟩ is defined by

|Ψ (t+1)⟩ = U |Ψ (t)⟩ , (2.1)

where

U =
∑
x∈VN

(
|x − 1⟩⟨x| ⊗ P(x)

+ |x⟩⟨x| ⊗ R(x) + |x + 1⟩⟨x| ⊗ Q(x)
)
.

(2.2)

The matrices P(x), Q(x), and R(x) are considered to be the
decomposition elements of C(x); i.e., P(x)+Q(x)+R(x) =
C(x). They correspond to the transition clockwise, the tran-
sition anti-clockwise, and remaining in place, as shown in
Figure 2. By Eqs. (2.1) and (2.2), we obtain

|ψ(t+1)(x)⟩ = P(x + 1) |ψ(t)(x + 1)⟩
+ R(x) |ψ(t)(x)⟩ + Q(x − 1) |ψ(t)(x − 1)⟩ .

Finally, the measurement probability of the particle at
position x at time step t, denoted by µ(t)(x), is given by

µ(t)(x) := ∥ψ(t)(x)∥2.

This definition is based on the Born rule of quantum me-
chanics and satisfies the requirements for the probability
measure for any t ∈ N ∪ {0}.

3. Proposed Method

We consider the N-armed bandit problem with cycle CN ;
where N slot machines with probabilistic rewards are bijec-
tively linked to vertices on CN . The principle involves the
initialization of the QW-setting and three additional steps
shown in Figure 3. These three steps are repeated itera-
tively, wherein we call a round a decision. A run consists
of multiple decisions, typically performed J times.

[STEP 0] QW-setting initialization
For the first decision, the settings of the quantum walk are
determined as follows:
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• The initial position s1 is probabilistically determined
by the uniform distribution on VN , resulting in the ini-
tial state |Φ1⟩ = |s1⟩ ⊗ |O⟩.
• The parameter of coin matrices is θ1(x) = θ◦ ∈ [0, 2π)

for all x ∈ VN .
After this step, the run proceeds to the next three steps.

[STEP 1] Quantum walk
Quantum walks are executed for T time steps with the ini-
tial position s j and the parameter θ j(x). After running T
steps of time evolution, the QWer is measured, yielding
the value x̂ j ∈ VN according to the probability distribution
µ(T )(x).

[STEP 2] Slot machine play
The slot machine x̂ j ∈ VN obtained in [STEP 1] is played,
and the reward is probabilistically obtained. Consequently,
the empirical success probability p̂ j(x) of slot machine
x = x̂ j is updated.

[STEP 3] QW-setting adjustment
Using the new empirical success probability p̂ j(x), the QW-
setting is updated for the next decision:
• The new initial position s j+1 is the one whose p̂ j(x)

is provisionally highest among all N. Thus, the new
initial state is |Φ j+1⟩ = |s j+1⟩ ⊗ |O⟩.
• The new parameter of the coin matrices is

θ j+1(x) = θ◦ exp(−a · p̂ j(x)b),

where a, b ≥ 1, and θ◦ is defined in [STEP 0].
After this step, the process returns to [STEP 1].

4. Numerical Simulation

In this section, we give simulation results for our pro-
posed model. We conduct runs in parallel K times to assess
the efficiency of our model. To evaluate the impact of linear
spreading and localization, we consider a scenario where
these elements are removed from the model. Specifically,
we construct an RW-based model for MAB problems cor-
responding to the QW-based model and compare the per-
formance of the QW-based and RW-based models.

4.1. Random-Walk-Based Algorithm

Here we introduce discrete-time random walks (RWs) on
cycle CN . The position of walkers is determined as follows:
• Initially, a walker exists at position s ∈ VN .
• At each time step, a walker at position x moves one

unit clockwise with probability q(x), moves one unit
anti-clockwise with probability q(x) or stays on the
current position with probability 1 − 2q(x).

Note that the probabilities of moving clockwise and anti-
clockwise are equal in this paper. Additionally, the con-
dition 0 ≤ q(x) ≤ 1/2 must be satisfied. Denoting the
existence probability of walkers by ν(t)(x), the rules above
are represented by the following equations:

Table 1: Parameter values used for numerical simulations
of the QW- and RW-based models.

Parameter Symbol Value
# of slot machines N 32

# of runs K 500
# of decisions for a run J 5000
Params. (QW-based) (a, b, θ◦) (5, 6, 5π/16)
Params. (RW-based) (a, b, q◦) (9, 6, 0.5)

ν(0)(s) = 1, ν(0)(x) = 0 (x , s);

ν(t+1)(x) = q(x + 1)ν(t)(x + 1)

+ (1 − 2q(x))ν(t)(x) + q(x − 1)ν(t)(x − 1).

Recall that addition and subtraction are modulo N.
The RW-based algorithm for the MAB problem is con-

structed based on the analogy of the QW-based one.
Herein, similar to the QW-based case, the initial position
is updated, and instead of the coin parameter θ(x), the tran-
sition probability q(x) varies using an exponential function
that depends on the empirical success probability:

q j+1(x) = q◦ exp(−a · p̂ j(x)b).

4.2. Comparison with RW-Based Algorithm

Here we compare the QW- and RW-based models. The
parameter values used for this series of simulations are
summarized in Table 1. The parameters are selected based
on their superior performances within the range of a =
1, 3, 5, 7, 9 and b = 2, 4, 6 for the respective models.

The blue and orange curves in Figure 4 demonstrate the
performances of QW- and RW-based models as the vari-
ations of the mean of total reward M, respectively. For
T ≥ 4, we see that the mean of M for the QW-based model
is larger than that of the RW-based model. This result indi-
cates that the performance of the QW-based model is supe-
rior to that of the RW-based model under some settings.

Linear spreading and localization’s impact on decision-
making can be observed by analyzing variations. Fig-
ures 5(a) and (b) illustrate the relationship between the
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Figure 4: Mean of total reward M over the variation of final
time step T of walks of the QW- and RW-based models.
Parameters are determined as shown in Table 1.
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Figure 5: The red markers show selected slot machine x̂ j over decision j in single runs of the (a) QW- and (b) RW-based
models. The number of time steps T per decision is 8, and other parameters are as in Table 1. Each run has total reward
M almost equal to the average values on each model. The black, sky blue, gray, and light green lines indicate the slot
machines with success probabilities 0.9, 0.7, 0.5, and 0.1, respectively. In this paper, only x = x∗ = 14 has the success
probability 0.9, so x∗ is regarded as the best slot machine.

decision j and the selected slot machine x̂ j in single runs
of the QW- and RW-based models, respectively. Therein,
you see that decision-making in the QW-based model con-
verges to the best slot machine x∗ around j = 1200, while
the RW-based one does around j = 1400. This indicates
that the QW-based model exhibits a higher level of explo-
ration than the RW-based one. The phenomenon of linear
spreading leads to a wider probability distribution of QWs
compared to RWs, facilitating the faster exploration of the
QW-based model. Additionally, the behavior of the QW-
based model after discovering x∗ is more stable than that
of the RW-based model. This suggests that the QW-based
model achieves more effective exploitation than the RW-
based model with this parameter set. After beginning the
concentrated investments to x∗, strong localization occurs
on vertex x∗ in the QW-based model, contributing to this
behavior.

5. Conclusion

This paper has introduced a novel approach for multi-
armed bandit (MAB) problems using quantum walks
(QWs). We have demonstrated that the QW-based model
can outperform the random-walk-based one by effectively
addressing the exploration–exploitation dilemma via the
unique property of QWs: the coexistence of linear spread-
ing and localization. Our approach combines exploration
with linear spreading and exploitation with localization.
By using linear spreading, the QWs cover the entire en-

vironment, minimizing the risk of missing the best slot ma-
chine. Simultaneously, localization helps continue using
the promising slot machine with a higher probability distri-
bution. Indeed, we showed that, under some settings, lin-
ear spreading contributes to exploring the environment and
quickly finding the best slot machine, and localization con-
tributes to exploiting the best slot machine more frequently.
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