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Abstract—We have already proposed chaotic search
methods to find near optimum solutions of TSPs. In these
methods, local search method is driven by chaotic neuro-
dynamics to avoid a local minimum. Due to effective con-
trol by the chaotic dynamics, the chaotic search methods
shows good performance. In this paper, we propose a new
method to solve TSP by using two different types of simple
local searches, 2-opt algorithm and Or-opt algorithm. In
the proposed method, the 2-opt and Or-opt algorithms are
driven by the chaotic neurodynamics. As a result, the pro-
posed method shows higher performance than the previous
chaotic search methods.

1. Introduction

The traveling salesman problem (TSP) is one of the fa-
mous combinatorial optimization problems which is de-
scribed as follows: given positions of cities, find the min-
imum length tour which visits each city exactly once. For

an n-city TSP, the number of possible tours is
(n − 1)!

2
. If n

is increase, the number of all possible tours exponentially
diverges. Then, the TSP generally belongs to a class of
NP-hard, and it is believed that it is almost impossible to
obtain an optimal solution of the TSP in a reasonable time
frame. Thus, it needs to develop effective algorithms for
finding near optimum solutions or approximate solutions.

To find the near optimal solutions or approximate so-
lutions for TSP, chaotic search methods for solving TSP
[6, 7, 8] have been already proposed. In these methods, a
chaotic dynamics is used to avoid local minima. To realize
the chaotic dynamics, a chaotic neural network model con-
structed by chaotic neurons [5] is used. The chaotic neu-
ron realizes an important biological feature of a real neu-
ron—the refractory effect [5]. Due to the refractory effect,
a neuron cannot fire for a certain period of time after it had
fired or emitted a spike. Then, it has already been shown
that good near optimal solutions can be found not only for
TSP [6, 7, 8] but also for other NP-hard problems such
as the quadratic assignment problem [10] and the motif ex-
traction problem [12, 13, 14, 15].

A simplest chaotic search method has already been pro-
posed to solve TSP [6, 7, 8]. In this method, an execution
of the 2-opt algorithm is driven by the chaotic neurodynam-

ics. The 2-opt algorithm exchanges two paths for other two
paths until no further improvement can be obtained (Fig.
1). However, a given tour by the 2-opt algorithm is not a
global optimum but a local optimum. To jump from such
a local optimum, we applied the chaotic neurodynamics to
the 2-opt algorithm [6, 7, 8]. As a result, this method shows
good results [6, 7, 8]. Next, to improve the performance
of the chaotic search, adaptive k-opt algorithm driven by
chaotic dynamics have been proposed. The adaptive k-opt
algorithm is almost the same as the Lin-Kernighan algo-
rithm [2] which is considered to be the best local search
for the TSP. In this method, the value of k is not fixed but
varied [7]: first, the 2-opt (k = 2) algorithm is applied to a
current tour to improve the tour; second, if a positive gain
value is obtained by the 2-opt algorithm, the 3-opt (k = 3)
algorithm is applied to improve the tour by a deterministic
rule [7]. While the positive gain value is obtained, the k-opt
algorithm is applied by increasing the value of k. As a re-
sult, this chaotic search method [7] shows better solutions
than the previous chaotic search [6, 8].

However, it is not so much effective to implement the
adaptive k-opt algorithm because of its algorithmic com-
plexity. In this sense, the chaotic search can be much im-
proved by simpler algorithms or their combinations. In this
paper, we proposed a new chaotic algorithm by introducing
a simple local search, Or-opt [1]. The Or-opt improves the
current tour by moving a partial tour of maximum three
consecutive paths in a different location (Fig. 2). The
Or-opt algorithm is considered to obtain solutions that are
comparable to the 3-opt algorithm in terms of quality of
solutions and an amount of time is closer to that of the 2-
opt algorithm. As a result, the proposed method obtained
better solution for previous chaotic search methods [8].
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Figure 1: An example of the 2-opt algorithm. In this exam-
ple, a(i) is the next city to i. Two paths (i-a(i) and j-a( j))
are deleted from the current tour, then new two paths, i- j
and a( j)-a(i), are added to obtain a shorter tour.
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Figure 2: An example of the Or-opt algorithm. In this ex-
ample, a(i) is the next city to i. A partial tour a(i)-· · ·-k is
inserted into another path ( j-a( j)).

2. The proposed method

In the proposed method, two local search algorithms, the
2-opt and the Or-opt [1], are driven by the chaotic dynam-
ics. To realize the method, a chaotic neuron [5] is assigned
to each city. If a chaotic neuron fires, the local searches
related to the corresponding city are carried out. The firing
of the ith neuron xi(t) is defined by

xi(t) = f (yi(t)), (1)

where f (y) = 1/(1 + exp(−y/ε)). yi(t) is the internal state

of the ith chaotic neuron at time t. If xi(t) >
1
2

, the ith neu-

ron fires at the time t, otherwise, the neuron is resting. yi(t)
is decomposed into two parts, ζi(t) and ξi(t). Each compo-
nent represents different factor to the dynamics of chaotic
neurons, a gain effect and a refractory effect, respectively.

The gain effect is expressed as:

ξi(t + 1) =

{

max j{β2∆i j(t) + ζ j(t)} (2-opt)
max j,k{βOr∆i jk(t) + ζ j(t)} (Or-opt)

, (2)

where β2 and βOr are scaling parameters; ∆i j(t) is a differ-
ence between the length of a current tour and that of a new
tour when city i and city j are connected after applying the
2-opt algorithm to city i (Fig.1); ∆i jk(t) is a difference of the
tour length in case of the Or-opt algorithm (Fig.2). ζ j(t) is
a refractory effect of the neuron j at time t which is defined
by Eq. (3).

The second factor is a refractory effect which works to
avoid the local minima. The refractory effect has a similar
effect as a memory effect in the tabu search [3, 4]. In the
tabu search, previous states are memorized in a tabu list.
Then, to avoid a local minimum, the solutions in the tabu
list are not allowed for a certain temporal duration called a
tabu tenure. In case of chaotic search, past firings are mem-
orized as previous states to decide strength of the refractory
effect. The strength of the refractory effect increases just
after firing and recovers exponentially with time. Thus, al-
though the tabu search perfectly inhibits to go back to the
same solutions for the certain temporal, the chaotic search
might permit to select the same solutions if a corresponding
neuron fires due to a larger gain than the refractory effect

or an exponential decay of the refractory effect. The refrac-
tory effect is expressed as:

ζi(t + 1) = −α

t
∑

d=0

kd
r xi(t − d) + θ (3)

= krζi(t) − αxi(t) + θ(1 − kr), (4)

where α controls a strength of the refractory effect after the
firing (α > 0); the parameter kr is a decay parameter of
the refractory effect (0 < kr < 1); θ is a threshold value.
Then, ζi(t + 1) expresses a refractory effect with a factor
kr, because the first term of the right hand side of Eq. (3)
becomes negative, if the neuron frequently fires in its past
history, which then depresses the value of ζi(t + 1), and
relatively leads the neuron state to a resting state.

The procedure of the proposed method is described as
follows:

1. Given an n-city TSP, and make an initial solution by
the nearest neighbor method.

2. Improve a current tour by the 2-opt algorithm driven
by a chaotic dynamics.

(a) A city i is selected from the neurons whose in-
ternal state has not been updated yet.

(b) A city j is selected in such a way ξi(t + 1) is
maximum.

(c) If the ith neuron fires (xi(t + 1) > 1
2 ), city i

and city j are connected by the 2-opt algorithm.
Then, if the best solution is obtained, 2-opt al-
gorithm is applied for the tour until no further
improvement can be obtained.

(d) Repeated the steps (a)-(c) until there exist neu-
rons whose internal state has not been updated
yet.

3. Improve a current tour by the Or-opt algorithm driven
by a chaotic dynamics.

(a) A city i is selected from the neurons that have
not updated yet.

(b) Cities j and k are selected in such a way ξi(t+ 1)
is maximum.

(c) If the ith neuron fires (xi(t + 1) > 1
2 ), the Or-opt

algorithm is executed for the city i. Then, if the
best solution is obtained, the 2-opt algorithm is
applied to the tour until no further improvement
can be obtained.

(d) Repeated the steps (a)–(c) until there exist neu-
rons that have not been updated yet.

4. Finish one iteration, and repeated the steps 2 and 3 for
sufficiently many times.

5. The Or-opt and the 2-opt algorithms are applied to the
best solution until no further improvement can be ob-
tained.
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3. Results

To evaluate the performance of the proposed method, we
solved benchmark problems in TSPLIB [16]. First, we con-
firmed the performance of the Or-opt algorithm.

Table 1 shows the results of the 2-opt algorithm, and the
2-opt and Or-opt algorithm for several types of the prob-
lems. From Table 1, the method introducing the Or-opt
algorithm is obtained better solutions than the 2-opt algo-
rithm for all problems. Table 2 shows the results of the
conventional chaotic search methods: the 2-opt algorithm
driven by chaotic dynamics which includes control and
annealing of parameters [8]; an adaptive k-opt algorithm
driven by chaotic dynamics which includes control and an-
nealing of parameters [8, 7]. The adaptive k-opt algorithm
is almost the same as the Lin-Kernighan algorithm which
is considered to be the best local search for the TSP. More-
over, in these methods, a double bridge (DB) algorithm is
applied to change the solution space, when a better solu-
tion could not be obtained within 100 iteration. The double
bridge algorithm is a special case of the 4-opt algorithm.
From Table 2, the chaotic dynamics improves the perfor-
mance of the 2-opt algorithm. These results indicate that if
we introduce the chaotic dynamics to avoid local minima
for the 2-opt and Or-opt algorithm, it is possible to realize
an effective chaotic search method.

In the proposed chaotic method, although many parame-
ters exist, we set the same values of parameters in Eq.(3) for
all instances: α = 0.95, kr = 0.30, θ = 1.0 and ε = 0.002.
Then, scaling parameters in Eq(2) were changed depend-
ing on the problem size. The scaling parameters, β2 and
βOr, are adjusted by the following equations:

β2 = 0.0625 ×

√

(the density for an instance)
0.00021418

, (5)

βOr = 0.0950 ×

√

(the density for an instance)
0.00021418

, (6)

where 0.0625 and 0.0950 are the good parameters for
pcb1173; 0.00021418 is the density of pcb1173 (Table
3). The key idea of Eqs.(5) and (6) is based on spatial
ranges and spatial densities of city-distributions of a TSP
instance. If the spatial range becomes larger, the value of
∆i j(t) (or ∆i jk(t)) becomes larger. Then, the scaling param-
eters must be tuned to smaller values. In addition to the
spatial range, the spatial density of the cities also affects
the scaling of ∆i j(t) (or ∆i jk(t)), because the value of ∆i j(t)
with lower densities is larger than that with higher den-
sity. In this paper, at first, we searched good parameters
set for pcb1173. Then, we adjusted the scaling parameters
for the other instances by Eqs.(5) and (6). Table 3 shows
the scaling parameter for each instance. Table 4 shows the
results of the proposed method. From Tables 2 and 4, the
proposed method shows better solutions than the chaotic
search methods based on the 2-opt algorithm for pcb442.

However, we cannot improve the performance of the
conventional chaotic search method for the other instances.

Table 1: The results of the 2-opt algorithm, and the 2-opt
and Or-opt algorithm. Each method is carried out until
no further improvement can be obtained. Results are ex-
pressed by percentages of gaps between obtained solutions
and the optimal solutions (%).

2-opt 2-opt + Or-opt
Problem Ave. Best Worst Ave. Best Worst

pcb442 7.473 4.858 10.258 3.970 2.229 6.588
pcb1173 9.885 8.541 11.167 6.238 4.415 8.079

pr2392 9.563 8.206 11.232 5.294 3.750 6.366
rl5915 9.395 8.206 11.416 6.244 5.345 7.436

rl11849 8.752 8.016 9.367 5.567 4.609 6.396

Table 2: The results of the conventional chaotic search: 2-
opt based chaotic search [8]; 2-opt based chaotic search
with double bridge [7], and the adaptive k-opt based chaotic
search with double bridge [7] for 5, 000 iterations. Results
are expressed by percentages of gaps between obtained so-
lutions and the optimal solutions (%).

2-opt [8] 2-opt+DB [7] adaptive k-opt+DB [7]
Problem Ave. Ave. Ave.

pcb442 1.034 0.982 0.825
pcb1173 1.692 1.748 1.569

pr2392 1.952 2.000 1.839
rl5915 2.395 2.273 1.742

rl11849 2.223 1.730 1.186

One of the possible reasons for the lower performance is
that the proposed method does not implement an annealing
effect. If we implement the annealing effect to the proposed
method, the searching space is gradually limited as the sim-
ulated annealing [17], and the proposed method searches
the solution space more deeply. Then, we replaced the scal-
ing parameters in Eq.(2) by the following equations:

β2(t + 1) = β2(t) + λ (2-opt), (7)

βOr(t + 1) = βOr(t) + γ (Or-opt). (8)

β2(t) and βOr(t) are new scaling parameters. Both of them
increase in proportion to time t. Table 5 shows the scaling
parameters of each instance. These parameters are adjusted
by the density of each instance. The other parameters are
set to the same values for all instances: α = 0.95, kr = 0.30,
θ = 1.0 and ε = 0.002. Table 6 shows the results of the
proposed method with the annealing effect. From Tables 2
and Table 6, proposed method obtains better solutions than
the conventional chaotic search methods.

4. Conclusions

In this paper, we proposed a new method for solving the
TSP using two local searches, the 2-opt algorithm and the
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Table 3: The value of the scaling parameters in Eq.(2).

Problem β2 βOr Density

pcb442 0.026553 0.040360 0.00003877
pcb1173 0.062500 0.095000 0.00021481

pr2392 0.017839 0.027116 0.00001750
rl5915 0.022336 0.033995 0.00002744

rl11849 0.031916 0.048512 0.00005601

Table 4: The results of the proposed method for 5, 000
iterations. Results are expressed by percentages of gaps
between obtained solutions and the optimal solutions (%).
The middle column of this table shows the results without
step 5 in the proposed method.

without greedy with greedy
Problem Ave. Best Worst Ave. Best Worst

pcb442 0.912 0.323 1.721 0.854 0.313 1.660
pcb1173 2.039 1.454 2.821 1.838 1.134 2.821

pr2392 2.606 2.030 3.309 2.487 1.874 3.308
rl5915 2.895 1.906 3.927 2.775 1.906 3.927

rl11849 2.782 2.326 3.274 2.470 1.982 3.027

Table 5: The values of the scaling parameters for each in-
stance.

Problem β2(0) λ βOr(0) γ

pcb442 0.00339 0.0000084 0.00339 0.0000127
pcb1173 0.00800 0.0000200 0.00800 0.0000300

pr2392 0.00228 0.0000057 0.00228 0.0000085
rl5915 0.00285 0.0000071 0.00285 0.0000107

rl11849 0.00408 0.0000102 0.00408 0.0000153

Table 6: The results of the the proposed method with the
annealing effect for 5, 000 iterations. Results are expressed
by percentages of gaps between obtained solutions and the
optimal solutions (%). The middle column of this table
shows the results without step 5 in the proposed method.

without greedy greedy
Problem Ave. Best Worst Ave. Best Worst

pcb442 0.469 0.021 1.085 0.451 0.021 0.906
pcb1173 0.898 0.520 1.489 0.840 0.436 1.366

pr2392 1.339 0.822 1.834 1.153 0.716 1.614
rl5915 1.430 0.912 1.962 1.291 0.824 1.825

rl11849 1.276 0.815 1.647 1.160 0.858 1.496

Or-opt algorithm, driven by chaotic neurodynamics. From
the computational results, we confirmed that it obtains bet-
ter solutions than the previous chaotic search methods. In
the future work, it is important to clarify why the proposed
method can improve performance with statistical methods
[13]. To improve the proposed method, we also consider
how to control different types of two local search algo-
rithms.
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