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Abstract—A new decomposition method for solving
general convex quadratic programming problems is pro-
posed in this paper. Experimental results show that the pro-
posed method is effective when the number of variables is
large and the number of equality constraints is small.

1. Introduction

Quadratic programming (QP) problem is one of the most
fundamental nonlinear optimization problems. Many prob-
lems arising in engineering and science can be formulated
as the QP problem. For example, the training of support
vector machines (SVMs), a pattern classification technique
which has attracted considerable attention in recent years,
is formulated as a special type of QP problems [1].

In a QP problem, one has to minimize a quadratic func-
tion of some variables subject to a set of linear equality
constrains and a set of linear inequality constraints. If the
objective function is convex, the problem is said to be a
convex QP problem. It is often said that the computation
time of a convex QP problem with n variables is propor-
tional to n3. In case of SVMs, the number of variables in
the QP problem is equal to the number of training samples,
which is often very large, for example, more than ten thou-
sands. Therefore, the reduction of the computation time
for large scale convex QP problems is very important for
the training of SVMs.

Decomposition method was first proposed by Osuna et.
al [2] in order to solve large-scale convex QP problems
arising in the training of SVMs efficiently. A basic strategy
of the decomposition method is to execute two operations
repeatedly until some optimality condition is satisfied: one
is to select a set of q variables, which is called the working
set, among all variables; the other is to minimize the ob-
jective function by updating only the selected q variables.
Since then many authors have developed different types of
decomposition methods for SVMs [3, 4], and some of them
are widely used as the standard methods.

In this paper, we propose a new decomposition method
which is applicable to general convex QP problems. The
conventional decomposition methods are restricted to prob-
lems with one equality constraint, and the working set se-

lection method depends heavily on this fact. In the pro-
posed method, on the other hand, the working set selection
is done based on the optimal solution of a linear program-
ming problem which is solved to check the stopping con-
dition. We also evaluate the effectiveness of the proposed
method through many experiments.

2. Quadratic Programming Problem

A general QP problem is formulated as follows:

Minimize f (x) = 1
2 xT Qx + cT x

Subject to Ax = b
Ex ≤ d

(1)

where x ∈ Rn is a variable; Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈
Rm, E ∈ Rl×n and d ∈ Rl are constants; Ex ≤ d stands for
componentwise inequality. If Q is positive semi-definite,
the objective function f (x) is convex and hence (1) is called
a convex QP problem.

In this paper, we will consider

Minimize f (x) = 1
2 xT Qx + cT x

Subject to Ax = b
x ≥ 0

(2)

instead of (1), where x ∈ Rn is a variable; Q ∈ Rn×n, c ∈ Rn,
A ∈ Rm×n and b ∈ Rm are constants. Problem (2) can be
obtained by setting l = n, E = −I and d = 0 in (1) where I
is the identity matrix. Thus (2) seems to be a special case
of (1), but, as shown in Appendix, any QP problem can
be transformed into the form of (2). In this sense, (2) is
regarded as a standard form of QP problems.

The set of optimal solutions of a convex QP problem
is completely characterized by the Karush-Kuhn-Tucker
(KKT) conditions [5]. In case of (2), a feasible solution
x is an optimal solution if and only if there exist λ = [λ1,
λ2, . . . , λm]T and µ = [µ1, µ2, . . . , µn]T such that the KKT
conditions:

Qx + c + ATλ − µ = 0 (3)
µ ≥ 0 (4)

µixi = 0, i = 1, 2, . . . , n (5)
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are satisfied. If xi > 0 then µi must be zero from (5). In
this case, the i-th component of (4) is necessarily satisfied,
and the i-th component of (3) is written as [Qx]i + ci +

[ATλ]i = 0, where [Qx]i ([ATλ]i, resp.) represents the i-th
component of the vector Qx (ATλ, resp.). If xi = 0 then
(5) apparently holds, and the conditions (3) and (4) for the
i-th component are rewritten as [Qx]i + ci + [ATλ]i ≥ 0.
Therefore the KKT conditions (3)–(5) can be rewritten as

[Qx]i + ci + [ATλ]i{
= 0, if xi > 0
≥ 0, if xi = 0 , i = 1, 2, . . . , n (6)

3. Proposed Algorithm

3.1. Algorithm

A new decomposition algorithm we propose in this paper
is as follows:

1. Find a feasible solution of Problem (2). Let this feasi-
ble solution be x(0). Set k := 0.

2. Set g(k) := Qx(k) + c.

3. Solve the following LP problem:

Minimize δ

Subject to
∣∣∣g(k)

i + [ATλ]i

∣∣∣ ≤ δ, ∀i ∈ I(k)
+

g(k)
i + [ATλ]i ≥ −δ, ∀i ∈ I(k)

0

(7)

where I(k)
+ = {i | x(k)

i > 0} and I(k)
0 = {i | x

(k)
i = 0}. If the

optimal value of δ is less than ε, then stop. Otherwise
go to Step 4.

4. For i = 1, 2, . . . , n, set

v(k)
i :=

{ ∣∣∣g(k)
i + [ATλ∗]i

∣∣∣ , if i ∈ I(k)
+

−min(0, g(k)
i + [ATλ∗]i), if i ∈ I(k)

0
(8)

where (λ∗, δ∗) is the optimal solution of (7) obtained
in Step 3. Sort these values in decreasing order as

v(k)
i1
≥ v(k)

i2
≥ · · · ≥ v(k)

in
.

Set I(k)
B := {is}qs=1 and I(k)

N := {is}ns=q+1.

5. Solve (2) under the additional constraints

xis = x(k)
is
, ∀i ∈ I(k)

N ,

and set x(k+1) to the obtained optimal solution.

6. Add 1 to k and go to Step 2.

In Step 1, a feasible solution of (2) is found by solving
the LP problem:

Minimize f (x) = 0
Subject to Ax = b

x ≥ 0
(9)

which has n variables, m equality constraints, and n in-
equality constraints.

Both the stopping condition and the working set selec-
tion in the proposed algorithm are based on the KKT con-
dition (6). In order to determine whether there exists λ sat-
isfying the KKT condition, the LP problem (7) is solved,
which has m + 1 variables and at most 2n inequality con-
straints. It is apparent that (7) has an optimal solution
(δ∗, λ∗) such that δ∗ = 0 if and only if the KKT condition
is satisfied. However, we employ an approximate optimal-
ity condition δ∗ < ε for the stopping condition, due to the
rounding error in numerical computations. The strategy of
the working set selection is to choose q variables which
most violate the optimality condition. This is used in most
decomposition methods for the training of SVMs. In the
proposed algorithm, the degree of violation for each vari-
able x(k)

i is represented by v(k)
i and calculated as (8).

Let us assume without loss of generality that IB =

{1, 2, . . . , q}. Then the optimization problem in Step 5 is
expressed as

Minimize 1
2 xT

BQBBxB + (QBN x(k)
N + cB)T xB

Subject to ABxB = b − AN x(k)
N

xB ≥ 0
(10)

where xB, x(k)
B and cB are the vectors composed of the first

q components of x, x(k) and c, respectively; QBB is the q×q
matrix composed of the first q rows and the first q columns
of Q; QBN is the q × (n − q) matrix composed of the first
q rows and the last n − q columns of Q; AB and AN are
the first q columns and the last n − q columns of A, respec-
tively. Since (10) is a QP problem with q variables, it can
be solved much faster than the original problem (2).

3.2. Convergence Issue

It is easily seen from the constraints of (10) that x(k)

satisfies the constraints of (2) for all k. Also, it is appar-
ent that f (x(k)) is monotone decreasing with k. However,
these facts are not sufficient to guarantee the convergence
or the finite termination of the proposed algorithm. Never-
theless, the authors conjecture that the proposed algorithm
always stops within a finite number of iterations after find-
ing an optimal solution, because no counterexample has
been found in a number of experiments carried out by the
authors. As for the decomposition methods for the train-
ing of SVMs, the convergence properties have been well
studied and some sufficient conditions for ensuring the con-
vergence have been derived [6, 7]. Analytical techniques
used in these studies may also be useful for the conver-
gence analysis of the proposed method.

4. Experiments

In order to evaluate the effectiveness of our decompo-
sition algorithm, we compare the computation time of the
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Figure 1: Computation time of the direct method and the
proposed method for n = 400 and m = 10.

proposed method with that of the direct method for vari-
ous kinds of QP problems of the form (2). By the direct
method we mean that (2) is solved with a conventional QP
problem solver. We have implemented both the proposed
method and the direct method in Scilab 4.1.2, which has the
function “linpro” for solving LP problems and the function
“quapro” for solving QP problems. Programs were run on
a PC with Intel Celeron 2.66GHz and 512MB RAM.

QP problems were randomly generated as follows. Com-
ponents of the matrix A and the vectors c and b were set to
random numbers between −1 and 1. The matrix Q was
generated by Q = PT P so that Q becomes positive semi-
definite, where components of the matrix P were set to ran-
dom numbers between −1 and 1.

First, we measured the computation time of the direct
method and the decomposition method for QP problems
with n = 400, m = 10 and q ∈ {40, 80, 120, 160, 200, 240}.
Results are shown in Fig.1 The direct method is faster than
the decomposition method for all q.

Next, we measured the computation time of the direct
method and the decomposition method for QP problems
with n = 1400, m = 10 and q ∈ {40, 80, 120, 160, 200, 240}.
Results are shown in Fig.2 This time, the decomposition
method is faster than the direct method for all q. In par-
ticular, the computation time is reduced to about 64% by
using the decomposition method when q = 160. These
results show that the decomposition method in fact works
effectively.

It is seen from Figs.1 and 2 that the effectiveness of
the proposed method depends heavily on n, the number
of variables. So we next measured the relative computa-
tion time, which is defined as the computation time of the
proposed method divided by that of the direct method, for
n = 400, 600, 800, 1000, 1200, 1400. Results are shown in
Fig.3. It is clearly seen that the relative computation time
decreases as n increases. When n = 400 or n = 600, the
relative computation time is greater than 1 for any q, which
means that the direct method is faster than the proposed
method. When n = 800 or n = 1000, the relative com-
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Figure 2: Computation time of the direct method and the
proposed method for n = 1400 and m = 10.
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Figure 3: Relative computation time of the proposed
method for m = 10.

putation time is less than 1 for some values of q. When
n = 1200 and n = 1400, the relative computation time is
less than 1 for any q.

So far, we have fixed the value of m to 10. However, m
is also an important factor that determines the computation
time of the proposed method, because our decomposition
algorithm has to solve an LP problem with m + 1 variables
in each iteration. In order to investigate how the value of
m affects the computation time of the decomposition algo-
rithm, we measured the computation time for n = 1000,
q = 160 and m ∈ {10, 20, 30, 40}. Results are shown in
Fig.4. The decomposition method is faster than the direct
method for m = 10 and m = 20, but slower for m = 30
and m = 40. From this observation, we can say that the the
proposed algorithm is less effective for large m.

Finally, in order to investigate which part of the al-
gorithm is the most time consuming, we have measured
the computation time of Step 1, where an feasible solu-
tion is found by solving (9), for n = 1400, m = 10
and q ∈ {40, 80, 120, 160, 200, 240}. Results are shown in
Fig.5. The computation time of Step 1 is much longer than
that of the remaining part. Therefore, if we solve (9) by the
decomposition method, the total computation time may be
reduced further.
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Figure 4: Relationship between computation time of the
proposed method and m for n = 1000 and q = 160.
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Figure 5: Total computation time and the computation time
for finding an initial feasible solution for n = 1400 and
m = 10.

5. Conclusions

A new decomposition method that can be applied to gen-
eral convex QP problems was proposed. According to ex-
perimental results, the proposed method is faster than the
standard QP problem solver when the number of variables
is large and the number of equality constraints is small.
The reduction of the computation time of Step 1 is a fu-
ture problem.
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A. Transformation of QP problems

We will show that any QP problem of the form (1) can
be transformed into the form of (2). First, by introducing
the variable y ∈ Rl, the inequality constraint in (1) is trans-
formed as

Ex + y = d, y ≥ 0 .

Next, we express the variable x ∈ Rn with two nonnegative
variables u ∈ Rn and v ∈ Rn as

x = u − v, u ≥ 0, v ≥ 0 .

Finally, by defining x̃ = [uT , vT , yT ]T ∈ R2n+l, we can
rewrite (1) as

Minimize f̃ (x̃) = 1
2 x̃T Q̃x̃ + c̃T x̃

Subject to Ãx̃ = b̃
x̃ ≥ 0

which has the same form as (2), where Q̃ ∈ R(2n+l)×(2n+l),
c̃ ∈ R2n+l, Ã ∈ Rm+l and b̃ ∈ Rm+l are given by

Q̃ =

 Q −Q O
−Q Q O

O O O

 , c̃ =

 c
−c
0

 ,
Ã =
[

A −A O
E −E I

]
, b̃ =

[
b
d

]
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