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Abstract— Chaotic neural networks have been applied to 
various combinatorial optimization problems, and effectiveness 
of chaotic dynamics for solution search has been shown. 
However, the conventional chaotic neural networks based on the 
Hopfield-Tank neural network can solve the problems whose 
objective function is only second or lower-order function of the 
state of the neurons. In order to apply the chaotic optimization 
framework to more general problems, we introduce the higher-
order neural networks which have higher-order connections and 
energy function. We verify effectiveness of a chaotic method on 
such a higher order neural network by comparing its 
performances with gradient dynamics and stochastic dynamics. 

I. INTRODUCTION 
Effectiveness of the chaotic dynamics on optimization 

problems has been shown by various experimental results. 
There are several approaches, such as the methods using 
chaotic dynamics on the Hopfield neural networks [1,2], the 
chaotic dynamical tabu searches [3,4], and so on. The 
Hopfield neural network has property that its energy function 
monotonically decreases, and has been applied to various 
optimization problems [5]. However, the state of this neural 
network converges to an undesirable local minimum. In order 
to improve the performance of the Hopfield neural network, 
the chaotic neural network has been applied [1,2], whose 
chaotic behavior moves its state and avoid trapping at a local 
minimum. The solution generated by the chaotic neural 
network is better than the stochastic searches such as the 
Boltzmann machines or simulated annealing. Such an 
optimization method using the chaotic neural network can be 
implemented on electric circuits which have super high-speed 
computational ability. Horio et al. have realized a chaotic 
neural network circuit which has 400 chaotic neurons and 
reported its great performance [6]. 

Although the chaotic neural network has high performance 
on combinatorial optimization problems, the conventional 
chaotic methods were based on the Hopfield neural network, 
whose energy function is only the second order products of the 
state of the neurons. By extending this framework to a higher 
order energy function, we will be able to solve more general 

problems by chaotic dynamics. As an example of the higher 
order combinatorial optimization problems, autonomous and 
decentralized radio resource usage optimization to minimize 
difference of the throughput among the mobile terminals 
becomes fourth order objective function [7,8]. As another 
example, an optimal energy function for the Traveling 
Salesman Problems becomes higher order energy function [9]. 

In order to apply effective chaotic dynamics to such 
general problems, we introduce the higher order neural 
networks [10] which have higher order connections and 
energy function. We apply the chaotic dynamics to the higher 
order neural network and evaluate effectiveness of the 
proposed framework on artificial problems. 

II. HIGHER ORDER CHAOTIC NEURAL NETWORKS 

A.  Higher order energy function 
The update equation of the conventional first order 

Hopfield neural network is given as follows,  
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where  is the output of the i th neuron at time t,  is 
the connection weight between the i th and the j th neurons,  
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iθ  is the threshold of the i th neuron, respectively. The energy 
function of this neural network which always decreases by 
each neuronal update can be defined as follows, 
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Equation (2) includes second or lower order products of 
the state of the neurons   but does not include third or higher 
order products. Therefore, the Hopfield neural network can 
solve 0-1 integer programming problem with only second or 
lower order products. However, for example, the objective 
function for fair radio resource management in wireless 
network [7,8], that minimizes the difference of the 
throughputs assigned to each terminal can be defined as 
follows, 
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(6) 
 
where m is the order of the neural network. Although we can 
solve various problems by the higher order neural network, it 
stops search at an undesirable local minimum similar to the 
conventional Hopfield neural networks. 

(3) 
 

This is a fourth order objective function, which cannot be 
solved by the chaotic method based on the conventional 
Hopfield neural network. 

B. Higher order neural networks 
The higher order neural network has second or higher 

order mutual connections between neurons [10]. Its update 
equation can be defined as follows, 

 , (4) 
⎩
⎨
⎧ >

=+
otherwise0

0)( if1
)1(

tD
tx i

i

 

,

 

i

N

j
iijkj

N

j

N

k
ijk

N

j

N

k

N

l
lkjijkl

N

j

N

k

N

l
lkjlijki

txwtxtxw

txtxtxw

txtxtxwtD

θ+++

+

+

=

∑∑∑

∑∑∑

∑∑ ∑

== =

= = =

= = =

11 1

1 1 1

1 1 1

)()()(

)()()(

)()()()(

L

L

LL L

  (5) 

C. Higher order chaotic neural networks 
The chaotic neural network can avoid trapping at 

undesirable local minimum by its chaotic behaviors. 
Compared to stochastic searches, such as Boltzmann machines 
or simulated annealing, effectiveness of the chaotic search has 
been shown by many experimental results [1,2]. The chaotic 
neurons in the chaotic neural network have analog output 
function and refractoriness, which make it hard for neurons to 
fire after its previous firings. The update equations of the 
chaotic neural network are given by the following equations, 
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where  are the higher order connection weights between  
i th,  j th, … , and k th neurons. The energy function of the 
higher order neural network, which decreases autonomously 
by neuronal updates using (4) and (5), becomes as follows, 

kijw L

where )(tiη  and )(tiζ  are the feedback inputs and the 

internal states of the i th neuron at time t,  and  are the 
decay parameters of the feedback inputs and the internal states,   

mk rk

α  is the scaling parameter of the refractory effects, r is the 
positive bias, ε  is a parameter of the sigmoid function, 
respectively. 

When the value of each parameter was set appropriately, 
the chaotic neural network continues search of the global 
minimum with avoiding trapping at local minima by chaotic 
dynamics. However, the chaotic search based on the 
conventional Hopfield neural network cannot deal with the 
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energy function of the third or higher order products of the 
neurons. 

 To introduce higher order connections and energy 
functions to chaotic neural network, we define the following 
equations to update each neuron, 
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We call this a higher order chaotic neural network. 

III. EVALUATION OF THE PERFORMANCE OF HIGHER 
ORDER CHAOTIC NEURAL NETWORKS 

A.  A higher order assignment problem 
In order to verify the effectiveness of the chaotic dynamics 

on higher order problems, we evaluate the performance of the 
proposed higher order chaotic neural networks on an artificial 
higher order combinatorial optimization problem. Here, we 
define a higher order assignment problems that searches an 
optimum permutation P which minimizes an objective 
function ,  )(HAP PE
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Figure 1.  Mapping the higher order assignment problem on the higher order 
neural network. 

When a given problem was the third order assignment 
problem, it can be solved by minimizing the following energy 
function, 
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where λ  and μ  are the weights of the constraint term and the 
objective function term, respectively. From (6) and (17), the 
connection weights and thresholds can be obtained as follows, 
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By applying these connection parameters to (5) and (11) 
—(14), we can solve the third order assignment problems by 
simple updates of the higher order chaotic neural networks. where d is the order of the problem,  is the  

th value in a high dimensional matrix A ,  is the 

 th value in a high dimensional matrix B. Here, 
we assume that A and B are symmetric matrices, and their 
diagonal elements are zero. 

kija L ),,,( kji L

kijb L
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B. Comparison with other techniques 

Solvable performances of the proposed higher order 
chaotic neural network were compared with the conventional 
higher order neural network with gradient dynamics and that 
with the Boltzmann machines as a stochastic search. To 
update the state of Boltzmann machines for the higher order 
neural network,  , which is the probability for the i th 

neuron to fire(
)(Pr ti

1)( =tix ) at time t, was defined as follows, 

To solve this problem by the higher order chaotic neural 
networks, first we map the state of the permutation P on the 
state of the neural network as shown in Fig.1. 
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where  is the temperatures at time t,  is an initial value 
of temperature and 

)(tT 0T
γ   is the cooling schedule, respectively. 

We introduce problems whose sizes are 5 to 10. We used 
the parameter values shown in Table 1. 

TABLE I.  TABLE TYPE STYLES 

 N=5 N=6 N=7 N=8 N=9 N=10
λ  1.60 2.70 4.00 5.50 7.20 9.90
μ  0.01 0.01 0.01 0.01 0.01 0.01

0T  1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
γ  0.991 0.991 0.991 0.991 0.991 0.991

mk  0.7 0.7 0.7 0.7 0.7 0.7

rk  0.9 0.9 0.9 0.9 0.9 0.9
α  1.0 1.0 1.0 1.0 1.0 1.0
r  0.15 0.15 0.15 0.15 0.15 0.15
ε  0.02 0.02 0.02 0.02 0.02 0.02

 

Fig.2 shows the average solutions of the conventional 
higher order neural network, the higher order neural network 
with Boltzmann machines and the higher order chaotic neural 
networks. The cutoff time of each run is 1000 iterations. From 
the results, the higher order chaotic neural networks have 
better solutions than the gradient and the stochastic dynamics 
in each problem size. Although the stochastic dynamics is 
better than the gradient dynamics, the higher order chaotic 
neural networks perform even better than the stochastic search. 
We confirm that the chaotic dynamics is effective even for the 
higher order combinatorial problems. 

 

Figure 2.  Average solutions of the higher order neural network with 
gradient dynamics, Boltzmann machines and chaotic dynamics. 

 

IV. CONCLUSION 
In this paper, we proposed a higher order chaotic neural 

network and showed its performance better than the 
conventional or the stochastic higher order neural networks. 
This framework is more generally applicable to various 
combinatorial optimization problems, which could not be 
solved by the conventional Hopfield neural network approach. 
For example, fair radio resources management in wireless 
networks [7,8] is a higher order combinatorial optimization 
problem, which can be solved by this new proposed approach. 
We have also applied the dynamics of the higher order chaotic 
neural network to factorization into prime number, whose 
objective function becomes third order function. The proposed 
approach using higher order chaotic neural network enables 
application of effective chaotic search based on simple 
updating to various complicated optimization problems.  
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