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Abstract—The classical Bonhoeffer-van der Pol (BvP)
neuron model is revisited. Using rigorous asymptotic anal-
ysis, the approximate value of a bifurcation parameter in
which a so-called “canard” solution appears is obtained.
Interesting chaotic canard solutions generated by numer-
ical errors and extraordinarily slow spiking are also pre-
sented. The variation of the inter-spike intervals (ISI’s) and
its relation to the ability of information processing in single
neurons are discussed.

1. Introduction

Our brain uses spikes (action potentials) of neurons for
information processing. Neuronal dynamics underlying
the spike generation possess at least two different time
scales: the fast excitatory dynamics which raise the poten-
tial quickly, and the slow recovery (refractory) dynamics
[1]. Such a system with multiple time scales is a singu-
larly perturbed system. The threshold property of neurons
is produced by the multiple time scales also. So-called ca-
nard (duck) solutions play an important role in dynamical
system and singular perturbation theory. In neuronal view-
points, canard solutions are special solutions which follow
the threshold. Therefore, canard solutions are important
from the viewpoint of neuroscience.
Using the classical Bonhoeffer-van der Pol (BvP) equa-

tions of a neuronmodel, we explore the neuronal dynamics.
We show that rigorous asymptotic analysis provide us the
approximate value of a bifurcation parameter in which the
canard solution appears. Interesting chaotic canard solu-
tions of two-dimensional BvP model generated by compu-
tational errors are also presented. Then, extending the BvP
model to three-dimensional one, we show that completely
different spiking appears [2]. Finally, we investigate the
variation of the inter-spike intervals (ISI’s) of the model
in the presence of noise and discuss its relation to single-
neuronal information processing ability.

2. Simple equations for neuronal excitation (spiking)

The famous Hodgkin-Huxley (HH) equations [4] de-
scribe neuronal excitation or spike generation. The follow-
ing Bonhoeffer-van der Pol (BvP) equations (or FitzHugh-
Nagumo (FHN) equations) [3] are the simplified neuronal
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Figure 1: Phase plane of the BvP equations (1) with various
orbits (Iext = 0, a = −1.1, ε = 0.1).

model of the HH equations:

ẋ = x − x3/3 − y + Iext (1a)

ẏ = ε(x − a) (1b)

where ẋ means dx/dt. The variable x denotes the mem-
brane potential of a neuron, y is a “recovery” variable
which corresponds to the combination of Na+ inactivation
and K+ activation of the HH model, and Iext the current
stimulus applied externally.
The BvP equations are a very important model which

tracts the essential feature of neuronal spiking. Although
the BvP model is very simple and classic, it is still interest-
ing, particularly in the “singularly perturbed” case: ε � 1.
In the following, we set as Iext = 0 and change the param-
eter a only, since the change of Iext has the same effect as
that of a mathematically.
Let us explain the “neuronal” features of the BvP model

(1). Figure 1 shows the x-y phase plane of eq. (1). The
broken cubic curve is the x-nullcline on which ẋ = 0 and
the vertical broken line is the y-nullcline (ẏ = 0). Thus, the
intersection point P of the two nullclines is an equilibrium
point of eq. (1) which corresponds to the resting state or
the quiescent state of a neuron. Typical orbits (x(t), y(t))
with different initial values of eq. (1) are also drawn (cor-
responding waveforms of x(t) are shown in Fig.2). If the
neuron is in its resting state and a pulse-like current is in-
jected, the neuron responds and settles down back to the
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Figure 2: x(t) waveforms of orbits shown in Fig.1.

resting state after time elapse. For example, suppose that an
orbit starts at the equilibrium or the resting pointP . A large
single-pulse perturbation in the positive (depolarizing) di-
rection of the x-axis displaces it rightwards, it goes through
both the regenerative and active regions, and finally comes
back to P . If the perturbation is small, the orbit does not
enter the active region, i.e. the BvP neuron model gener-
ates no spike. Note that, in Fig.1, the parameters are set as
Iext = 0, a = −1.1, ε = 0.1 in which case the equilibrium
point P is stable.
There is a curve or thin region (not shown) labeled “QTP

Separatrix” near the middle branch of the cubic x-nullcline.
The QTP (quasi-type) separatrix separates the “small orbit”
without spike from the “large orbit” with spike in the phase
plane. The word QTP denotes the fact that the separatrix
does not separate the orbits in a strict sense, since the orbit
continuously (but abruptly) changes its shape from small to
large: there are intermediate orbits with medium size. The
separability becomes stronger if ε is decreased. The QTP
separatrix corresponds to the quasi-threshold of a neuron.
The QTP separatrix is important not only in the viewpoint
of a neuron model but also in the viewpoint of nonlinear
dynamical system theory.

3. Canard solutions of the BvP equations

3.1. Asymptotic analysis of canards

If the value of a is increased from the previous value
(−1.1), the y-nullcline moves rightwards and intersects
with the x-nullcline in its middle branch. In this case,
the equilibrium point becomes unstable, and then the BvP
equations possess a stable periodic orbit (limit cycle).
Figure 3 shows the examples of two limit cycles for dif-

ferent parameter values of a. These limit cycles (in particu-
lar, the large one) are strange in a sense that it moves along
the middle branch (QTP separatrix) of the x-nullcline, be-
cause the middle branch is “unstable” branch where orbits
have a tendency to move away. We also note that the differ-
ence of the corresponding a values between the two limit
cycles are small: a very small change of the parameter
value induces a drastic change of limit cycle size. These
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Figure 3: Large (a = −0.98630 13748 30635) and small
(a = −0.98634 72106 93359) canard solutions of the BvP
equations (1) (Iext = 0, ε = 0.1).

special limit cycles are called canards (a French word for a
duck) since their shapes remind us of a duck.
The precise value of the parameter a where the BvP

equations possess a canard solution, can be obtained by us-
ing the “asymptotic analysis method” shown in [7, 8] as
follows:

a = a0 + a1ε + a2ε
2 + a3ε

3 + · · ·
a0 = −1, a1 =

1
8
, a2 =

3
32

, a3 =
173
1024

,

a4 =
7593
16384

, · · ·

The first and second values of a shown in Fig.3 correspond
to the first 5 terms and 21 terms of this asymptotic expan-
sion, respectively.

3.2. Computer-generated chaotic canards

So far, the value of the parameter ε was 0.1. If ε is fur-
ther decreased to 0.01, completely different behavior will
appear. Figure 4 shows an example of the solution of eq. (1)
when ε = 0.01. The value of a has been calculated us-
ing the first ten terms of the asymptotic expansion (Note
that ten terms are enough many for numerical computa-
tion of double precision when ε = 0.01). The solution
shows a mixed oscillation of small and large amplitudes.
However, such solution is impossible in two-dimensional
dynamics, since in two-dimensional phase plane, it neces-
sarily induces intersections of the solution curve, which vi-
olate the uniqueness of solutions. The solution shown in
Fig.4 is apparently chaotic one, which is also impossible
in two-dimensional dynamics. Therefore, we conclude that
this solution is generated by numerical errors.
As shown in Fig.1, near the middle branch of the cubic

x-nullcline, there is a quasi-separatrix which separates left-
ward and rightward orbits in the phase plane. Canards are
the special solutions which follow the “unstable” separa-
trix. As ε decreases, the width of the separatrix exponen-
tially decreases. Thus, when ε = 0.01, the width becomes
too narrow for canard solutions to follow the separatrix by
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Figure 4: Chaotic canard solution generated by numerical
errors. a = −0.99874 04512 45955, ε = 0.01, Iext = 0.
(a) x-y phase plane. (b) x(t) waveform.

numerical errors; numerical errors force the solution left-
wards or rightwards randomly. This phenomenon shows
that our asymptotic computation was very successful in ob-
taining such a precise value of a.

4. Extended BvP equations

In this section, we extend the BvP model (1) to three-
dimensional equations [2, 5]:

ẋ = x − x3/3 − y − z + Iext (2a)

ẏ = η(x − ay) (2b)

ż = ε(x − bz) (2c)

Note that newly introduced equation (2c) is a simple linear
equation and the variable z plays a role as an inhibitory
variable since the sign of z in eq. (2a) is negative. Also
note that the only nonlinear term in the equations is the
cubic term in eq. (2a).

4.1. Abnormally slow spiking

Figure 5 shows the examples of very slow spiking in the
extended BvP equations (2). The waveform of the mem-
brane potential x(t) is shown. Note that the scale of ab-
scissa of Fig.5 is much greater than that of Fig.2: The spik-
ing in Fig.5 is extraordinarily slow.
Between the two panels (a) and (b) of Fig.5, the be-

havior of spiking is much different, although both spik-
ings are slow. In panel (a), the variable x stays in the

x

t
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(b)

x

t

Figure 5: Examples of very slow spiking. (a) a = 1.5,
b = 1.0, η = 0.1, ε = 0.01, Iext = −0.874. (b) a = 3.0,
b = 1.0, η = 0.13, ε = 0.01, Iext = −0.477175.

neighborhood of an unstable equilibrium point without ap-
parent oscillation and after long time elapse, it begins to
make sub-threshold oscillation to make a spike finally. In
panel (b), the membrane potential x(t) keeps on a (chaotic)
sub-threshold oscillation for a long time, and make spikes
with chaotic inter-spike intervals.

4.2. Noise-Induced spiking variability

In the following, we consider the effect of noise on the
BvP equations (2) and examine the inter-spike intervals
(ISI’s). We add a noise term σξ(t) to the righthand side
of (2a), where ξ(t) is the Gaussian white noise (mathemat-
ically, a formal derivative of the standard Wiener process)
and σ denotes the noise intensity (the standard deviation of
noise).
To examine the ISI’s, we consider the coefficient of vari-

ation (CV) of ISI’s which is often used as a measure of
spike train irregularity. The CV of a random variable T is
defined using the expectation (mean) and the variance of T
as CV ≡ √

Var[T ]/E[T ].
Figure 6 shows the effect of noise on the slow spiking

of the BvP equations (2). In panel (a), the mean (left axis,
circle mark) and the coefficient of variation (CV, right axis,
plus mark) of ISI’s are plotted as a function of the noise
intensity σ. Other panels show the examples of spiking
(waveform of x(t)). The red circle and plus marks on the
left axis of (a) correspond to the noiseless case (σ = 0). In
this case, the neuron model shows a periodic spiking with
period 1341 (dimensionless) shown in panel (b). Firstly, we
note that this spiking itself is remarkable in that the spiking
is extraordinarily slow as compared with the original BvP
neuron model (1): the three-dimensional dynamics of the
extended BvP equations is essential. Secondly, very small

- 78 -



40

30

20

10

0

x1
03

 

1086420
x10

-3
 

2.0

1.5

1.0

0.5

0.0

M
ea

n
 IS

I

C
V

σ

(a)

-2

-1

0

1

2

x

40x10335302520
t

(c)

-2

-1

0

1

2

x

40x10335302520
t

(e)

-2

-1

0

1

2

x

40x10335302520
t

(b)

-2

-1

0

1

2

x

40x10335302520
t

(d)

-2

-1

0

1

2

x

21.0x10320.820.620.420.220.0
t

(f)

Figure 6: (a) Mean ISI (◦) and CV (+) vs. noise intensity. Examples of spiking: (b) σ = 0, (c) σ = 0.002, (d) σ = 0.004,
(e) σ = 0.01, (f) Magnification of (e). (a = 1.5, b = 1.0, η = 0.1, ε = 0.01, Iext = −0.874)

noise increases the mean ISI drastically (almost forty thou-
sands!: noise-induced deceleration) and the ISI variability
(CV) is also high.
As the noise intensity slightly increases, the mean ISI

changes in a wide range with the high ISI variability (high
CV) remained. Recently, high ISI variability of cortical
neurons attracts much attention from information encoding
(see the references cited in [6]). Further increase of noise
eventually induces spiking with short ISI (noise-induced
acceleration) and moderate CV. We note that the noise in-
tensity in Fig.6 is not so strong (see the magnification of x
waveform shown in panel (f)); all phenomena are the dis-
tinct result of the interplay of noise and nonlinear dynamics
of the neuron.

5. Conclusion

Using the simple BvP equations which include one non-
linear term only, we have shown several interesting nonlin-
ear phenomena: canards, computer-generated chaos, slow
oscillations near the Hopf bifurcation, noise-induced accel-
eration and deceleration.
From the viewpoint of neuroscience, we note that the os-

cillation (repetitive spiking) of BvP model is generated by
the Hopf bifurcation which means that the BvP model is
the class-II neuron. Regardless of this classification as the
class-II neuron, the BvP neuron possess a high ability of
wide-range frequency (ISI) modulation. Since ISI’s are the
main information carrier in our brain, the diversity of neu-
ronal spiking presented in this paper would be important
for elucidation of neuronal computation mechanism.

Acknowledgments

This work was partially supported by the Kayamori
Foundation of Informational Science Advancement, the

Japan Society for the Promotion of Science, and the Ai-
hara Project, the FIRST program from JSPS, initiated by
CSTP.

References

[1] S. Doi, J. Inoue, Z. Pan, K. Tsumoto, “Computational
Electrophysiology — Dynamical Systems and Bifurca-
tions,” Springer, 2010.

[2] S. Doi, S. Kumagai, “Generation of very slow neuronal
rhythms and chaos near the Hopf bifurcation in sin-
gle neuronmodels,” J. Comput. Neurosci. 19, 325–356,
2005.

[3] R. FitzHugh, “Impulses and physiological states in the-
oretical models of nervemembrane,”Biophy. J. 1, 445–
466, 1961.

[4] A. L. Hodgkin, A. F. Huxley, “A quantitative descrip-
tion of membrane current and its application to conduc-
tion and excitation in nerve,” J. Physiol. 117, 500–544,
1952.

[5] J. Honerkamp, G. Mutschler, R. Seitz, “Coupling of a
slow and a fast oscillator can generate bursting,” Bull.
Math. Biol. 47, 1–21, 1985.

[6] J. Inoue, S. Doi, “Sensitive dependence of the co-
efficient of variation of interspike intervals on the
lower boundary of membrane potential for the leaky
integrate-and-fire neuron model,” Biosys. 87, 49–57,
2007.

[7] J. Moehlis, “Canards in a surface oxidation reaction,”
J. Nonl. Sci. 12, 319–345, 2002.

[8] J. Moehlis, “Canards for a reduction of the Hodgkin-
Huxley equations,” J. Math. Biol. 52, 141–153, 2006.

- 79 -


	Navigation page
	Session at a Glance
	Technical Program

