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Abstract—This paper shows a generalization of Rump’s
method, which generates a class of matrices with extremely
large condition number.

1. Introduction

S. Rump proposed a method to generate a class of
extremely ill-conditioned matrices [1]. Here the ill-
conditiond matrix implies those having its condition num-
ber such as 1050 ∼ 10100 or larger in double precision arith-
metic. These matrices are very useful to examine the qual-
ity of accuracy-guaranteed algorithms for solving linear
simultaneous equations [2]–[4]. For this purpose we desire
more variety of extremely ill-conditiond matrices.

Rump used a tricky technique (shown in Sec. 2.1) to gen-
erate an ill-conditioned matrix A. One of key points of his
method is to generate a 2×2 matrix V whose determinant is
one and whose elements are extrelemy large. To generate
V Rump utilized a very special equation, the PELL EQUA-
TION. Since his method includes some freedom, we have a
class of ill-conditioned matrices of an arbitrary size. How-
ever the class of matrices is not so wide and therefore it
is still desirable to generate more variety of ill-conditioned
matrices. This is the motivation of this reseach and this
paper studies on the following three items.
Item 1. We show that almost the same discussion as
Rump’s is possible when we use the matrix V generated
by the Euclid algorithm instead of the Pell Equation. This
extends the Rump’s matrices considerably. Instead of his
tricky and rather complicated calculation, we use a simple
matrix manipulation, by which the following Item 2 can
easily be derived.
Item 2. We show an extension to the case where the matrix
V is a 3 × 3 matrix.
Item 3. Related to Items 1 and 2 above, we show that we
can find a 3 × 3 integer matrix A′ = [a′i j] with |a′i j| < µ and
with |A′| = 1 by bordering a 2 × 2 integer matrix.

2. A generalization of Rump’s method by means of
simple matrix manipulation (Item 1)

2.1. Three key steps in Rump’s method

Rump’s method is composed of three key steps as:

1. Generation of a 2 × 2 integer matrix V such that

V =
[

P F
Q G

]
, |V | =

∣∣∣∣∣∣ P F
Q G

∣∣∣∣∣∣ = 1 (1)

where P,Q, F and G are extremely large positive in-
tegers such as 1050.

2. P,Q, F and G are particularly chosen as

F = kQ, G = P (2)

and P and Q > 0 satisfy the PELL Equation:

P2 − kQ2 = 1 ⇒ V =
[

P kQ
Q P

]
, |V | = 1 (3)

3. P,Q, F and G are realized by decomposing it into rel-
atively small integers and by using the matrix similar
to the companion matrix as shown later.

As the result he could give an explicit form of the inverse
matrix A−1 as well as the condition number of A.

2.2. Formulation of the problem

In a similar way as Rump’s method we consider:
Problem 1: Generate a class of integer matrices, say B =
[bi j] satisfying

|B| = ±1 (4)

|bi j| < σ′ (5)

where σ′ is a number such as 108 (for single precision),
1016, 253 (for double precision), but may possibly be 2, 10
or 1000 depending on the applications.

2.3. Generalization of Rump’s method

Instead of the Pell equation we use the Euclid algorithm
to determine F and G in Eq.(1) for the prescribed P and
Q. As is well-known, this is possible if P and Q have no
common factor[5]. For example, we choose P and Q as:

P = 2k, Q = 3m or (6)

P = 2k15k211k3, Q = 3m17m2 (7)
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Let σ be a large number such as 108, 1016 and 253. The
extremely large numbers P, Q, F and G can be expanded
as:

P = pnσ
n + pn−1σ

n−1 + pn−2σ
n−2 + · · · + p1σ + p0

Q = qnσ
n + qn−1σ

n−1 + qn−2σ
n−2 + · · · + q1σ + q0

F = fnσ
n + fn−1σ

n−1 + fn−2σ
n−2 + · · · + f1σ + f0

G = gnσ
n + gn−1σ

n−1 + gn−2σ
n−2 + · · · + g1σ + g0

0 < P,Q, F,G < σn+1, 0 ≤ pi, qi, fi, gi < σ

Using the above, we define a (2n + 2) × (2n + 2) matrix, A
as

A =



pn pn−1 pn−2 pn−3 · · · p1 p0
qn qn−1 qn−2 qn−3 · · · q1 q0

1 −σ 0 0 · · · 0 0
0 1 −σ 0 · · · 0 0
0 0 1 −σ · · · 0 0

0 0 0 1
. . . 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −σ
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 0

fn fn−1 fn−2 fn−3 · · · f1 f0
gn gn−1 gn−2 gn−3 · · · g1 g0

0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 0
1 −σ 0 0 · · · 0 0
0 1 −σ 0 · · · 0 0
0 0 1 −σ · · · 0 0

0 0 0 1
. . . 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −σ



(8)

2.4. Calculation of the inverse matrix A−1

We will calculate A−1 for (10). Let

Γ ≡ H ⊕ H, H ≡



1 0 0 0 · · · 0 σn

0 1 0 0 · · · 0 σn−1

0 0 1 0 · · · 0 σn−2

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 σ

0 0 0 0 · · · 0 1


Then we have:

A′ ≡ AΓ ⇒ A = A′Γ−1 ⇒ A−1 = Γ(A′)−1

Let p, q, f , g be row vectors of order n and Σ∗n be n × n
matrix as follows:

p = [pn, pn−1, · · · , p1], q = [qn, qn−1, · · · , q1]

f = [ fn, fn−1, · · · , f1], g = [gn, gn−1, · · · , g1]

Σ∗n ≡


1 −σ 0 · · · 0
0 1 −σ · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −σ
0 0 0 · · · 1


and let Oml be m × l matrix with all entries 0.

Then A′ can be rewritten as:

A′ =


p P f F
q Q g G
Σ∗n On1 On,n On1

On,n On1 Σ∗n On1

 (9)

Let the (2n+2)×(2n+2) permutation matrix Perm changing
the order of the columns of A′ such that

A′′ ≡ A′Perm =


p f P F
q g Q G
Σ∗n On,n On1 On1

On,n Σ∗n On1 On1

 (10)

Then we have:

A′′ ≡ A′Perm ⇒ A′ = A′′P−1
erm ⇒ (A′)−1 = Perm(A′′)−1

(11)
Let A′′ be rewritten as:

A′′ =
[

U V
W 0

]
U : 2 × 2n, V : 2 × 2, W : 2n × 2n (12)

Then we have

(A′′)−1 =

[
0 W−1

V−1 −V−1UW−1

]
(13)

Since |V | = 1, we have:

V−1 =

[
G −F
−Q P

]
(14)

Since W can be written as:

W = Σ∗ ⊕ Σ∗ (15)

W−1 = Σ−1
∗ ⊕ Σ−1

∗ (16)

Σ−1
∗ =



1 σ σ2 σ3 · · · σn−1

0 1 σ σ2 · · · σn−2

0 0 1 σ · · · σn−3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 σ

0 0 0 · · · 0 1


We can easily calculate −V−1UW−1. So we have

A−1 = ΓPerm(A′′)−1 = ΓPerm

[
0 W−1

V−1 −V−1UW−1

]
(17)

of which first three columns are as follows:

σnG −σnF 1 + σn(−Gp̃n + Fq̃n) · · ·
σn−1G −σn−1F 0 + σn−1(−Gp̃n + Fq̃n) · · ·
· · · · · · · · · · · ·
−σnQ σnP σn(−G f̃n + Fg̃n) · · ·
−σn−1Q σn−1P σn−1(−G f̃n + Fg̃n) · · ·
· · · · · · · · · · · ·


(18)
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2.5. Infinity-norm condition number of A

From Eqs.(18) and (10) we have

||A−1||∞ > max[σn(G + F), σn(Q + P)]

||A||∞ > max[
n∑
0

{pi + fi},
n∑
0

{qi + gi}]

σn
n∑
0

pi ≥ P, σn
n∑
0

qi ≥ Q, σn
n∑
0

fi ≥ F, σn
n∑
0

gi ≥ G,

||A||∞ · ||A−1||∞ > max[(P + F), (Q +G)] ·max[(G + F), (Q + P)]

Assume without loss of generality that

P > Q, P > F ⇒ F > G

Then we have a final result (Proof is omitted):

||A||∞ · ||A−1||∞ > (P + F)(Q + P) ≈ O(σ2(n+1))

This is a generalization of Rump’s result.

3. Extension to Case where V is a 3 × 3 matrix (Item 2)

3.1. Outline of extension

Let P,Q,R, F,G,H, L,M,N be extremely large integers
with the magnitude less than σn+1 and let

V =

 P F L
Q G M
R H N

 , |V | = 1

P = pnσ
n + pn−1σ

n−1 + · · · + p0, |pi| < σ etc.,

Let A be a 3(n + 1) × 3(n + 1) matrix such that

A =



p̃ f̃ l̃
q̃ g̃ m̃
r̃ h̃ ñ
Σ 0 0
0 Σ 0
0 0 Σ


p̃, q̃, r̃, f̃ , . . . , ñ : row vectors of order n + 1

i,e., p̃ = [pn, pn−1, · · · , p0], etc.

Let Σ be an n × (n + 1) matrix such that

Σn =


1 −σ 0 0 · · · 0
0 1 −σ 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 1 −σ

 (19)

A−1 can similarly calculated as previously. Most different
point is the calculation of V−1:

V−1 =

 w11 w21 w31

w12 w22 w32

w13 w23 w33


where wi j is a cofactor of the (i, j) element of V .

3.2. Infinity-norm condition number of A

Infinity-norm condition number of A can be calculated
as follows:

||A−1||∞ > max [σn(|w11| + |w21| + |w31|) ,
σn(|w12| + |w22| + |w32|),
σn(|w11| + |w21| + |w31|)]

||A||∞ > max

 n∑
0

{ p̃i + f̃i + l̃i},
n∑
0

{q̃i + g̃i + m̃i} ,

n∑
0

{r̃i + h̃i + ñi}


Using the formula:

|V |V
(

i j
k l

)
= wikw jl − wilw jk

we can derive

P + F + L =
N
L

(P + Q + R), etc.,

Without loss of generality we assume

P,Q, F,G, and w33 are very large.

Then we have the final result:

||A||∞ ·||A−1||∞ > (P+F+L){|w31|+|w32|+|w33|} ≈ O(σ3(n+1))

4. Generation of a third order integer matrix
with the determinant one

. Problem 2: Find a 3 × 3 integer matrix A′ = [a′i j] by
bordering the prescribed 2×2 matrix A = [ai j]. Here |a′i j| <
µ, where µ corresponds to σn+1 in the previous sections.

A′ =

 a11 a12 y1

a21 a22 y2

x1 x2 z

 , |A′| = 1 (20)

|ai j| < µ, |xi| < µ, |yi| < µ, |z| < µ (21)

Of course we have to impose some restrictions on ai j. The-
orem 1: An n × n integer matrix A can be bordered so that
its determinant is equal to one, only if the (n − 1)th deter-
minant (common) divisor is one.

In the case of n = 2 this means that there is no common
factor among all ai j (i, j = 1, 2). As a special case we
impose:
Assumption 1: a21 and a22 have no common factor.
Theorem 2: On Assumption 1 we can find x1, x2, y1, y2

and z satisfying the conditions in Problem 2.
Proof of Theorem 2)
Lemma 1: By the Euclid algorithm we can choose x1

and x2 such that ∣∣∣∣∣∣ a21 a22

x1 x2

∣∣∣∣∣∣ = 1, |xi| < µ
3
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Then |A′| can be written as:

|A′| = y1

∣∣∣∣∣∣ a21 a22

x1 x2

∣∣∣∣∣∣ − y2

∣∣∣∣∣∣ a11 a12

x1 x2

∣∣∣∣∣∣ + z

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣
≡ y1 + ay2 + bz

Here in general

|a| < µ2, |b| < µ2

Lemma 2: Let a and b are integers satisfying

|a|, |b| < µ2.

Then there exist y2 and z satisfying |y2|, |z| < µ and

|ay2 + bz| < µ.

We can prove Lemma 2 by using Euclid algorithm.
Using Lemma 2, we can choose y1 such that

|y1 + ay2 + bz| = 1, |y1| < µ

Proof of Lemma 2) Assume that a > b > 0 and let x0 ≡ a
and x1 ≡ b. The Euclid algorithm derives the following:

x0 = k0x1 + x2 (0 < x2 < x1)

x1 = k1x2 + x3 (0 < x3 < x2)

x2 = k2x3 + x4 (0 < x4 < x3)
...

xn−1 = kn−1xn + xn+1 (0 < xn+1 < xn)

xn = knxn+1 + xn+2 (0 < xn+2 < xn+1)

From this we have the following expression:[
x0

x1

]
=

[
pn pn−1

qn qn−1

] [
xn

xn+1

]
p0 = 1, p1 = k0, pn = pn−1kn−1 + pn−2

q0 = 0, q1 = 1, qn = qn−1kn−1 + qn−2

The following important formula holds:∣∣∣∣∣∣ pn pn−1

qn qn−1

∣∣∣∣∣∣ = (−1)n

We therefore have:[
xn

xn+1

]
= (−1)n

[
qn−1 −pn−1

−qn pn

] ∣∣∣∣∣∣ x0

x1

]
or

xn = (−1)n[qn−1x0 − pn−1x1]

xn+1 = (−1)n[−qnx0 + pnx1]

Lemma 2 can be proved by showing 0 < pn < µ from the
following theorem:

Theorem 3: Assume that

µ2 > x0 > x1 > µ > 0 (22)

and let n be an integer such that

xn > µ, xn+1 < µ (23)

Then
µ > pn > qn(> 0) (24)

Proof of Theorem 3) Assume first that n is even. Then the
above conditions means

qn−1x0 − pn−1x1 > µ

0 < −qnx0 + pnx1 < µ

Since pnqn−1 − pn−1qn = 1 holds, we have:

qn−1 =
1 + pn−1qn

pn

which is substituted into the above, we have:

1 + pn−1qn

pn
x0 − pn−1x1 > µ

from which we have

x0 + pn−1(qnx0 − pnx1) > pnµ

Since µ2 > x0 and 0 > qnx0 − pnx1 > −µ hold, we have:

µ2 > pnµ, i.e., pn < µ

This completes the proof for n even. The case of n odd can
be treated similarly.

5. Conclusion

We show some generalization of Rump’s method to gen-
erate extremely ill-condition matrices.

Acknowledgment

This research was supported in part by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Specially Promoted Re-
search, no. 17002012, 2005-2010, on “Establishment of Verified Numeri-
cal Computation”and by the Grant-in-Aid for Scientific Research (C) (No.
20560374) of the Ministry of Education, Culture, and Science in Japan.

References

[1] S.M. Rump, “A class of arbitrarily ill conditioned floating-point ma-
trices”, SIAM Matrix Anal. Appl. vol.12, no.4. pp.645–653, Oct.
1991.

[2] S. Oishi, K. Tanabe, T. Ogita, S. M. Rump: Convergence of Rump’s
Method for Inverting Arbitrarily Ill-conditioned Matrices, Journal of
Computational and Applied Mathematics, 205:1 (2007), 533-544.

[3] T. Ohta, T. Ogita, S. M. Rump, S. Oishi: Numerical Verifica-
tion Method for Arbitrarily Ill-conditioned Linear Systems, Trans.
JSIAM, 15:3 (2005), 269-287. [in Japanese]

[4] S. Rump, “Inversion of extremely ill-conditioned matrices in floating-
point,” to be submitted, 2008.

[5] Teiji Takagi, “Lectures on Algebra (2nd ed.),” vol.20, pp.130–141,
1965.[in Japanese]

[6] Teiji Takagi, “Lectures on Elements of Integer Theory,” vol.20,
pp.130–141, 1971.[in Japanese]

4

- 56 -


	Navigation page
	Session at a glance
	Technical program

