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Abstract—This paper proposes projection corre-
lation which is a new dissimilarity measure for clus-
tering. This dissimilarity has both of the features of
cosine correlation and norm-based dissimilarity. The
details of the features are discussed by using dissim-
ilarity level curve. Moreover, the effectiveness of the
proposed dissimilarity is verified in comparison with
the conventional dissimilarities, i.e., squared Euclidean
metric and cosine correlation with applying to agglom-
erative hierarchical clustering.

1. Introduction

The more effective technique of data mining be-
comes to be needed [1, 2], as data to be handled by
computers more increase.

Cluster analysis, or clustering, is one of the methods
of the data mining. We can classify the given data into
some groups called clusters without any external crite-
ria by clustering. Measures of similarity or dissimilar-
ity, which are defined between data, are used instead
of the external criteria in clustering [1, 3]. Roughly
speaking, there are two methods in clustering, one is
hierarchical method and the other is non-hierarchical
one. We consider the hierarchical method in this pa-
per. In the method, a pair of data which has the max-
imum (minimum) value of similarity (dissimilarity) is
regarded as one cluster. Here, we show the definition
of the measure of dissimilarity as follows:

Definition 1 (Dissimilarity) d is called dissimilar-
ity iff the function d : Rp × Rp → R satisfies the
following equations from (1) to (2) for all x, y.

d(x, x) ≤ d(x, y) (1)

d(x, y) = d(y, x) (2)

The explanation of dissimilarity is omitted owing to
the limited space.

As the examples of similarity or dissimilarity, we
can consider cosine correlation x·y

‖x‖·‖y‖ or squared Eu-

clidean metric ‖x − y‖2 on Rp, respectively. Particu-
larly, the cosine correlation is effective in the field of
the information retrieval [4].

However, the measure has a problem, that is, the
measure is calculated only based on the angle between
the vectors of data. In other words, even if the dis-
tance between two points is long or short, the similar-
ity takes same value. From the property, the value of
similarity between the data near the origin is strangely
calculated. Of course, the cosine correlation is avail-
able in some field, e.g. information retrieval. But we
believe that it is not available in clustering.

To solve the problem, we propose a new measure
of dissimilarity which is called projection correlation.
Moreover, we apply the measure to an agglomerative
hierarchical clustering (AHC) and verify the effective-
ness of the proposed dissimilarity through some nu-
merical examples.

2. Projection Correlation

In this section, we propose a new proposed dissim-
ilarity called projection correlation. First, we define
projection correlation and derive some equations to
use in clustering algorithms. Second, we plot dissimi-
larity level curves to show the shape of classification.

2.1. Definition of Projection Correlation

Let xk ∈ Rp (k = 1 ∼ n) be each data. We assume
that each data xk is replaced to x̃k using arithmetic

average x̄ =
P

n

k=1
xk

n
, that is, x̃k = xk − x̄.

Here, we consider a new relation between xa and xb

of projection correlation in the following Eq. (3).

d̂(xa, xb) = ‖x̃a‖ − ‖x̃b‖ cosφab (3)

φab is the angle between the vectors of x̃a and x̃b.
Fig. 1 and 2 shows the illustrative concept of projec-

tion correlation. In the cases like Fig. 2, d̂(xb, xa) < 0.

x̃b

x̃a

d̂(xa, xb)
φab

x̄

‖x̃b‖ cos φab

Figure 1: Projection Correlation d̂(xa, xb)

We have to notice that d̂(xa, xb) 6= d̂(xb, xa). Hence
the function does not satisfies Eq. (2) and it is not
a measure of dissimilarity. Therefore, we consider the
following definitions which satisfy the definition of dis-
similarity to use the projection correlation.

Definition 2 (Maximum Projection Correlation)
dmax : Rp × Rp → R is called maximum projection
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d̂(xb, xa)

φab

x̄

‖x̃b‖ cos φab

Figure 2: Projection Correlation d̂(xb, xa)

correlation iff dmax satisfies the following equation:

dmax(xa, xb) = max
(

d̂(xa, xb), d̂(xb, xa)
)

Here x̃k = xk − x̄ (k = a, b).

Definition 3 (Minimum Projection Correlation)
dmin : Rp × Rp → R is called minimum projection
correlation iff dmin satisfies the following equation:

dmin(xa, xb) = min
(∣

∣

∣
d̂(xa, xb)

∣

∣

∣
,

∣

∣

∣
d̂(xb, xa)

∣

∣

∣

)

Definition 4 (Average Projection Correlation)
davg : Rp ×Rp → R is called average projection cor-
relation iff davg satisfies the following equation:

davg(xa, xb) = avg
(

d̂(xa, xb), d̂(xb, xa)
)

Definition 5 (Mean Square Projection Correlation)
dmsq : Rp ×Rp → R is called mean square projection
correlation iff dmsq satisfies the following equation:

dmsq(xa, xb) = avg

(

(

d̂(xa, xb)
)2

,
(

d̂(xb, xa)
)2

)

We show dissimilarity level curves of each correla-
tion on Fig. 3, Fig. 4, Fig. 5 and Fig. 6.
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Figure 3: Dissimilarity Level Curve of Maximum Pro-
jection Correlation
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Figure 4: Dissimilarity Level Curve of Minimum Pro-
jection Correlation
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Figure 5: Dissimilarity Level Curve of Average Pro-
jection Correlation

3. Numerical Examples

In this section, we apply the proposed measures,
Euclidean metric and cosine correlation to AHC Al-
gorithms and verify the effectiveness of the measures.

3.1. AHC Algorithms

In this section, we show AHC algorithm and some
methods to update the values of similarity. We don’t
show the case of dissimilarity.

Algorithm 1 (AHC Algorithm)

AHC-1 Initialization

Gi := {xi}

d(Ga, Gb) := s(xa, xb)

AHC-2 Merging

max s(Ga, Gb) −→ G′ := Ga ∪ Gb

C := C − 1

AHC-3 Update Similarity or Dissimilarity

Calculate d(G′, Gi) for all Gi : Gi 6= G′
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Figure 6: Dissimilarity Level Curve of Mean Square
Projection Correlation

AHC-4 Convergence Criterion

If C = 1, stop this algorithm, otherwise go back
to AHC-2.

3.2. Update Option

Here, we show three methods to update, that is, sin-
gle linkage method, complete linkage method and un-
weighted pair-group method using arithmetic averages
(it is called also average linkage between the merged
group). The explanation is omitted owing to the lim-
ited space.

3.3. Numerical Examples

We show some numerical examples in this section.
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Figure 7: Squared Euclidean Metric using Single Link-
age Method

4. Discussion

4.1. Maximum Projection Correlation and
Mean Square Projection Correlation

When we apply AHC by using squared Euclidean
metric to data set 1, we can not classify the data near
the average of all data x̄ (Fig. 7). By contrast, when
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Figure 8: Maximum Projection Correlation using Sin-
gle Linkage Method
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Figure 9: Mean Square Projection Correlation using
Single Linkage Method

we apply AHC by using maximum projection correla-
tion to data set 1, we can classify data set 1 into four
clusters (Fig. 8). Likewise, when we use mean square
projection correlation, we can classify data set 1 into
four cluster (Fig. 9).

These results from the classification depend on con-
figuration using by maximum projection correlation
and mean square projection correlation. The data near
x̄ is classified sensitively. On the contrary, the data far
x̄ is classified loosely.

4.2. Average Projection Correlation

When we apply AHC by using average projection
correlation and cosine correlation to data set 2, the
results of Fig. 10 and Fig. 11 are obtained. The data
near x̄ are strangely classified in case of using both of
the measures.

These results by the average projection correlation
has the similar classification configuration to cosine
correlation.

4.3. Minimum Projection Correlation

When we apply AHC by using squared Euclidean
metric and the minimum projection correlation to data
set 3, the results of Fig. 12 and Fig. 13 are obtained.
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Figure 10: Cosine Correlation using Average Linkage
Between the Merged Group
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Figure 11: Average Projection Correlation using Av-
erage Linkage Between the Merged Group

By contrast to the case of squared Euclidean metric,
minimum projection correlation has strange classifica-
tion border.

5. Conclusion

In this paper, we have shown behavior of some dis-
similarities derived from projection correlation. From
these results, we have obtained conclusion: (1) We can
anticipate that we apply maximum projection correla-
tion to the data set that density of data, cluster con-
figuration or cluster size are nonuniform. (2) Average
projection correlation is not an effective method by
contrast with cosine correlation because the classifi-
cation configuration of average projection correlation
is similar to the case of cosine correlation. In addi-
tion, the calculation of average projection correlation
is complicate. (3) We can consider that minimum pro-
jection correlation is unsuitable for clustering.

In future works, we will discuss the following prob-
lems: (1) Changing the definition of x̄, (2) Applying
projection correlation to other clustering algorithms,
(3)Constructing some clustering algorithms based on
projection correlation.
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Figure 12: Squared Euclidean Metric using Average
Linkage Between the Merged Group

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Average Between Group - Minimum Projection Correlation

"clusterA.dat"
"clusterB.dat"
"clusterC.dat"
"clusterD.dat"

"gravity.dat"

Figure 13: Minimum Projection Correlation using Av-
erage Linkage Between the Merged Group

Acknowledgment

This study is partly supported by the Grant-in-Aid
for Scientific Research (C) (Project No.18500170) from
the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

References

[1] Fukuda Takeshi, Morimoto Yasuhiko, Tokuyama
Takeshi : ‘Data Mining’, Kyouritsu Shuppan,
2001.

[2] P. Adriaans, D. Zantige : ‘Data Mining’, Addison
Wesley Longman, 1998.

[3] J. A. Hartigan : ‘Clustering Algorithms ’, John
Wiley & Sons, 1983.

[4] Kishida kazuaki, “Techniques of Document Clus-
tering: A Review”,
http://wwwsoc.nii.ac.jp/mslis, 2003.

[5] H. Charles Romesburg, ‘Cluster Analysis for Re-
searchers’, 1989.

- 52 -


	Navigation page
	Session at a glance
	Technical program

