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Abstract—Various radio access network (RAN) ser-
vices have been developed and commercialized. In order
to always use the best connection, vertical handover tech-
nologies for adaptively switching among those various dif-
ferent RANs without interruption of an ongoing communi-
cation session have been developed, and several protocols
to enable such handover have been standardized. In this
paper, we propose an optimal RAN selection algorithm,
which uses autonomous and distributed neural network dy-
namics, to optimize radio resources usage and quality of
services (QoS) in heterogeneous wireless network environ-
ment. We introduce a higher order neural network to opti-
mize satisfaction rate of QoS level required by applications
on the user terminals. By computer simulation, we show
that the proposal method improves the QoS satisfaction rate
by distributed update of neurons, which doesn’t require any
centralized computation.

1. Introduction

Various wireless communication technologies have been
developed and commercialized, and ubiquitous communi-
cation services have been realized. As radio access net-
works (RANs) for short distance wireless communications,
wireless LAN, such as IEEE 802.11b, 11g, and 11a, and
wireless PAN, such as Bluetooth, have been widely de-
ployed. As RANs with large coverage area, the 2G or the
3G cellular phone systems are available everywhere, and
the research and development toward the 4G is now on-
going. Recently, WiMAX services are also gradually ex-
panding. Wireless LAN systems enable high-speed com-
munications, but have the narrow coverage area. On the
other hand, cellular phone systems enable seamless mobile
communication. The features of those various RANs are
different from each other on cell size, transmission speed,
communication cost and so on.

In order to always use the best connection, vertical han-
dover technologies for adaptively switching among those
various different RANs without interruption of an ongoing
communication session have been developed, and several
protocols to enable such handover have been standardized,
such as the mobile IP [2], IEEE 802.21 [3] and so on. In

IEEE 1900.4 [4], the architecture which exchanges various
information required in order to optimize radio resource
usage has been standardized. By optimally handing over
among various different RANs, radio resource efficiency or
the quality of services (QoS) level can be optimized across
heterogeneous wireless networks.

Different RANs are usually managed by different op-
erator. Therefore, in heterogeneous wireless networks, it
may be difficult to perform radio resource usage optimiza-
tion by centralized algorithm, and autonomous and dis-
tributed optimization algorithms may be more suitable. As
autonomous and distributed decision making algorithms
in heterogeneous wireless networks, the method based on
the game theory [5,6] and optimization algorithms by the
neural networks [7-9] have been proposed. In the mutu-
ally connected neural network, the energy function is min-
imized by an autonomous and distributed update of each
neuron. The algorithm proposed in Ref. [9] using the
Hopfield neural network [10] maximizes throughput au-
tonomously and distributively by updates of each neuron.
In real situation, there are various mobile applications, such
as voice call, video call, email, www, and so on, whose re-
quired QoS level is different. Therefore, it is also important
to optimize radio resource usage based on the required QoS
level, not only mere load balancing optimization.

As a method to satisfy QoS level required by each termi-
nal, we propose an autonomous and distributed optimiza-
tion method which optimizes satisfaction rate of required
QoS level. Since the objective function which optimizes
the QoS satisfactory rate becomes the fourth order objec-
tive function, we introduce the higher order neural network
[11]. We realize such a neural network for optimizing RAN
selection by obtaining higher-order connection weights and
threshold, and evaluate its performance by computer simu-
lation.

2. Objective Function for Optimal RAN Selection

In this paper, it is assumed that available radio resources
are equally shared among the terminals. Under such an
assumption, available throughput Ti for the terminal i can
be defined by the following equation,
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Ti =
CL(i)

NL(i)
, (1)

where c j is the total throughput which the base station j can
provide, N j is the number of terminals which is connect-
ing to the base station j, and L(i) is the base station which
the terminal i is connecting, respectively. The optimization
problem of the RAN selection which satisfies QoS require-
ment of each user is defined. Although there are various
kinds of QoS parameters, only the throughput is taken into
account in this paper to evaluate the performance of our op-
timization algorithm. At each terminal, a RAN, which pro-
vides larger throughput that it requires, should be selected.
In order to utilize limited radio resources efficiently, it is
important to minimize the difference between the through-
put which a terminal requires and that shared to the termi-
nal. Therefore, the objective function for RAN selection
which satisfies a QoS requirement is defined as the dif-
ference between the throughput which a terminal requires
and the shared throughput. It is also necessary to make the
shared throughput larger than the throughput which a ter-
minal requires. Therefore, the objective function is defined
as follows,

F1 =

Nm∑

i=1

(Ti − Ri)2 − λTi, (2)

where Nm is the number of terminals, Ri is the required
throughput by the terminal i, and λ is the parameter for
the weight on the maximization of the throughput, respec-
tively. The first term means minimization of the differ-
ence between the throughput which a terminal requires and
the shared throughput. The second term means making a
higher throughput than the throughput which a terminal re-
quires.

3. Application QoS based Optimization by Distributed
and Autonomous Neural Network Dynamics

3.1. Relation between RAN Selection and State of Neu-
ral Network

Using the Hopfield neural network [12], we propose the
algorithm which solves autonomously and distributively
the optimization problem defined in Seq. 2. Relation be-
tween firing of the neurons and establishments of the wire-
less links is shown in Fig. 1. A firing of the neuron (i, j)
(xi j=1) is corresponded to that the terminal i connects to
the base station j, where xi j is the state of the neuron (i, j).

Based on this definition, Eq. (2) can be expressed as a
function of the state of neurons as follows,

F1 =

Nm∑

i=1

{(
Ti − Ri

)2 − λTi

}

=

Nm∑

i=1

{(CL(i)

NL(i)
− Ri

)2 − λCL(i)

NL(i)

}

Figure 1: Relation between firings of the neurons and es-
tablishments of the wireless links

=

Nm∑

i=1

{(NBS∑

j=1

xi j
C j

Nm∑

k=1

xk j

− Ri

)2

− λ
NBS∑

j=1

xi j
C j

Nm∑

k=1

xk j

}
,

(3)

where NBS is the number of base stations. However, in Eq.
(3), since the neuron xi j appears in the denominator, it can-
not be transformed into the form of the energy function of
the Hopfield neural network. Therefore, we have decided
to take the inverse of the throughput and minimize the fol-
lowing equation,

F2 =

Nm∑

i=1

{(
1
Ti
− 1

Ri

)2

+ λ
1
Ti

}
. (4)

Based on this equation, 1
Ti

can be transformed to the fol-
lowing equation,

1
Ti

=

NBS∑

j=1

Nm∑

k=1

1
C j

xi jxk j. (5)

Therefore, the objective function defined in Eq. (4) can be
transformed to the form of the energy function of the Hop-
field neural network. In the objective function in Eq. (4),
the first term strongly depends on the amount of available
throughputs. Therefore, we normalize this term by the ca-
pacity of each base station. Then, the final objective func-
tion, which we optimize in this paper, is defined as F3 and
is transformed to the function of the neuron state xi j as fol-
lows,

F3 =

Nm∑

i=1

{( 1
Ti
· 1

CL(i)
− 1

Ri
· 1

CL(i)

)2
+ λ

1
Ti

}

=

Nm∑

i=1

[[NBS∑

j=1

{ Nm∑

k=1

( 1
C j

)2
xi jxk j − 1

C j

1
Ri

xi j

}]2

+λ

NBS∑

j=1

Nm∑

k=1

1
C j

xi jxk j

]
. (6)

Since the objective function of Eq. (6) turns into the forth
order function of xi j, the Hopfield neural network which
minimizes the second order energy function is inapplicable
to this objective function.

3.2. Higher Order Neural Network [11]

In order to minimize the objective function in Eq. (6),
we introduce the higher order neural network [11]. The
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update equation of the third order neural network used in
this paper is the following equation.

xi j(t + 1) =



1 · · · 1
6

Nm∑

k=1

NBS∑

l=1

Nm∑

m=1

NBS∑

n=1
Nm∑

o=1

NBS∑

p=1

Ui jklmnopxkl(t)xmn(t)xop(t)

+
1
2

Nm∑

k=1

NBS∑

l=1

Nm∑

m=1

NBS∑

n=1

Vi jklmnxkl(t)xmn(t)

+

Nm∑

k=1

NBS∑

l=1

Wi jklxkl(t) + θi j > 0

0 · · · otherwise,

(7)

where Ui jklmnop, Vi jklmn ,Wi jkl and θi j are the third, the sec-
ond and the first order connection weights and the thresh-
old, respectively. By updating each neuron by this equa-
tion, the following energy function can be autonomously
minimized.

E2 = − 1
24

Nm∑

i=1

NBS∑

j=1

Nm∑

k=1

NBS∑

l=1

Nm∑

m=1

NBS∑

n=1

Nm∑

o=1

NBS∑

p=1

Ui jklmnopxkl(t)xmn(t)xop(t)

−1
6

Nm∑

i=1

NBS∑

j=1

Nm∑

k=1

NBS∑

l=1

Nm∑

m=1

NBS∑

n=1

Vi jklmnxkl(t)xmn(t)

−1
2

Nm∑

i=1

NBS∑

j=1

Nm∑

k=1

NBS∑

l=1

Wi jklxi j(t)xkl(t)

−
Nm∑

i=1

NBS∑

j=1

θi jxi j. (8)

There are several conditions for autonomous minimization
and convergence of the energy function by distributed neu-
ron updates. The first condition is that all the self feedback
connections should be 0. The second is that all the symmet-
ric connections should have the same weights. The third is
that each neuron is updated asynchronously.

3.3. Application QoS Optimization Algorithm using
Higher Order Neural Network

By transforming the Eq. (6) to the form of the Eq. (8)
and comparing those coefficients, with satisfying the con-
ditions for minimization described above, Ui jklmnop, Vi jklmn,
Wi jkl and θi j for autonomously minimizing the objective
function F3 can be obtained as follows,

Ui jklmnop = −(1 − δikδ jl)(1 − δimδ jn)(1 − δioδ jp)
·(1 − δkmδln)(1 − δkoδlp)(1 − δmoδnp)

·
[{( 1

Cn

)2( 1
C j

)2
+

( 1
Cp

)( 1
Cl

)2
}

·
(
δmoδ jpδnl + δioδnpδ jl + δikδnlδ jp + δkmδpnδl j

)

·
{( 1

Cn

)2( 1
Cl

)2
+

( 1
Cp

)( 1
C j

)2
}

·
(
δmoδlpδn j + δimδnpδ jl + δikδplδ jn + δkoδpnδl j

)

·
{( 1

Cl

)2( 1
C j

)2
+

( 1
Cp

)( 1
Cn

)2
}

·
(
δkoδ jpδnl + δkmδn jδlp + δioδplδ jn + δimδlnδ jp

)]
,

(9)

Vi jklmn = −(1 − δikδ jl)(1 − δimδ jn)(1 − δkmδln)

·
[
δimδnl

{( 1
C j

)2
(
2
( 1
Cl

)2
+

( 1
Cn

)2
)
− 2

( 1
Cn

)2 1
C j

1
Rm

}

+δ jlδim

{( 1
Cn

)2
(
2
( 1
Cl

)2
+

( 1
C j

)2
)
− 2

( 1
C j

)2 1
Cn

1
Ri

}

+δikδnl

{( 1
C j

)2
(
2
( 1
Cn

)2
+

( 1
Cl

)2
)
− 2

( 1
Cl

)2 1
C j

1
Rk

}

+δ jnδik

{( 1
Cl

)2
(
2
( 1
Cn

)2
+

( 1
C j

)2
)
− 2

( 1
C j

)2 1
Cl

1
Ri

}

+δkmδ jn

{( 1
Cl

)2
(
2
( 1
C j

)2
+

( 1
Cn

)2
)
− 2

( 1
Cn

)2 1
Cl

1
Rm

}

+δkmδl j

{( 1
Cn

)2
(
2
( 1
C j

)2
+

( 1
Cl

)2
)
− 2

( 1
Cl

)2 1
Cn

1
Rk

}

+2δ jlδ jn

(
1

C j

)4

+ 2δ jlδnl

(
1
Cl

)4

+ 2δ jnδnl

(
1

Cn

)4]
,

(10)

Wi jkl = −(1 − δikδ jl)

·
[
δ jl

{
3
(

1
C j

)4

− 2
(

1
C j

)3 1
Ri

+ 2λ
1

C j

+3
(

1
Cl

)4

− 2
(

1
Cl

)3 1
Rk

+ 2λ
1
Cl

}

+δik

{
−2

(
1

C j

)2 1
Cl

1
Ri
− 2

(
1
Cl

)2 1
C j

1
Rk

+
1

C j

1
Cl

(( 1
Ri

)2
+

( 1
Rk

)2
)}]

,

(11)

θi j =
( 1
C j

)4 − 2
( 1
C j

)3 1
Ri

+
( 1
C j

)2( 1
Ri

)2 − λ 1
C j
. (12)

By updating the neuron’s states using Eq. (7) with these
obtained connection weights and thresholds, the RAN se-
lection problem to optimize the QoS satisfaction rate can
be autonomously solved.

4. Simulation and Results

We evaluate the proposed RAN selection method satis-
fying QoS requirement in the heterogeneous wireless net-
work environment. We prepare 4 base stations, one pro-
vides 54Mbps, and other three provides 11Mbps, respec-
tively. We assume all the base stations are available for all
users.
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We compare the proposed RAN selection method with a
simple throughput maximization method. The results are
shown in Figs. 2 and 3. In Fig. 2, the throughputs which
each terminal requires is set to 0.3, 1.0, 3.0 or 4.0 Mbps. In
Fig. 3, those are set to 0.1, 1.0, 3.0 or 5.0 Mbps. Variance of
the required throughput in the second experimental setting
is relatively larger than the first one.

From the result of Figs. 2 and 3, it is verified that the
proposal method using the neural network dynamics im-
proves a QoS satisfaction rate. Comparing Figs. 2 and 3,
improvement is larger for the case with larger variance on
the QoS requirement in Fig. 3.
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Figure 2: QoS satisfaction rate by the highest capacity
base station selection algorithm and the proposed neural
base station selection algorithm. The terminals’ required
throuthputs are 0.3Mbps, 1Mbps, 3Mbps or 4Mbps.
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Figure 3: QoS satisfaction rate by the highest capacity
base station selection algorithm and the proposed neural
base station selection algorithm. The terminals’ required
throuthputs are 0.1Mbps, 1Mbps, 3Mbps or 5Mbps.

5. Conclusion

In this paper, we have proposed an autonomous and dis-
tributed RAN selection satisfying QoS requirement using
the higher order neural network. From the simulation re-
sults, it is shown that the proposal method improves a QoS
satisfactory rate.

Since the proposed algorithm is based on the distributed
update of each neuron, it does not need to perform central-
ized computation. Updating of the neural network can be
distributed to the terminals or the base stations, and optimal
RAN can be selected based on the neuron state. Therefore,
the scalability of the proposed system is very high, and
computational load can be distributed. Since the proposal
method can select RAN distributively, it is suitable for the
heterogeneous wireless networks. In Ref. [12], the op-
timization method of the load-balancing algorithm which
used a neural network dynamics has been designed and im-
plemented in real experimental wireless network [13], and
its feasibility has been verified. We are also going to im-
plement the algorithm proposed in this paper on the real
experimental wireless network to verify effetiveness of the
proposed approach.
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