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Abstract—In the paper we analyse delay model for the
blood cell production (The Lasota equation). The main
goal is to study the evolution of the density of states.
Frobenius-Perron operator describing the density trans-
formation is presented. Numerical calculations are con-
structed to analyse the approximation of evolving density
functions. Initial density functions are determined using
inverse cumulative distribution functions. For selected pa-
rameters of the equation simulations shows that chosen dif-
ferent initial densities converge to the same invariant den-
sity, what indicates the possibility of existence of an invari-
ant measure.

1. Introduction

We are considering the following delay model for blood
cells production:

dN(t)
dt

= −α · N(t) + (ρ · N(t − τ))s · e−γN(t−τ). (1)

Equation (1) was formulated by A. Lasota in [5]. Its bio-
logical interpretations are related with earlier model for red
blood cells system called the Lasota-Wazewska equation,
which is age structured equation with delay feedback [23].
N(t) represents amount of red blood cells (erythrocytes) in
blood circulation, α, ρ, γ are constants that have biologi-
cal meaning (for details see [23] or [22]), τ is a delay time
interpreting as a time of maturation of erythrocytes and s
is a power in nonlinearity describing the production rate
of blood cells. Some informations about the power depen-
dence of production rate of blood cells can be found e.g.
in [22], [13]. Because of the non-monotone character of
this nonlinearity equation (1) exibits complicated dynam-
ics. The influence of such nonlinearities on dynamics were
studied by many authors e.g. [21], [6], [10], [19], [3], [11].
The nonlinearities with non-monotone character were used
in some other delay models in biology and medicine e.g.
in Nicholson’s blowflies equation [16], [5], [4] or Mackey-
Glass delay model for white blood cell production [14].

In [5] A. Lasota was analysing chaotic behaviour of bio-
logical systems, using approach of ergodic theory. The goal

was to investigate existence of continous invariant and er-
godic measures in theoretical models of biological systems.
From the Birkhoff indyvidual ergodic theorem it follows,
that almost all trajectories are complicated if such measure
exists see [7]. With reference to eq. (1) the following con-
jecture were formulated [5, p. 248]:
Let Ch be the space of continous functions v : [−τ, 0] → R
with the supremum norm topology.
For some positive values of parameters ρ, τ, s and α there
exists on Ch a continuous measure which is ergodic and in-
variant with respect to equation (1).
Searching of an invariant measures is a very difficult
problem, requiering advance mathematical knowledge es-
pecially in the measure theory, ergodic theory and the
stochastic approach to dynamical systems [8], [17], [20].
One of the methods consist in analysis of the convergence
of the Frobenius-Perron operator for given transformation.
In the section 2.1 we will briefly describe Frobenius-Perron
operator. Other methods have also been reported (see e.g.
[9], [18], [2], [1]).

For some parameters numerical simulations of eq. (1)
indicates that system exibits ergodic properties and suggest
that continous invariant measure could exists on some sub-
spaces of the space Ch (see [15]). Here we want to study
preliminarily evolution of density of distribution of initial
states of the system (1). If there exists invariant and ergodic
measure numerical simulations should indicate that the ini-
tial density of any distibution converges to some invariant
limiting density. The goal will be to prepare numerical sim-
ulations for eq. (1) in order to be able to set distribution
of initial states and later to observe the evolution of initial
density.

2. Evolution of Densities

2.1. The Frobenius-Perron operator

Let (X,A, µ) be a measure space. Let S : X → X be a
measurable and nonsingular transformation. The evolution
of the density function f (x) for the initial states under the
action of S is given by the Frobenius-Perron operator P
(see [8], [20]) corresponding to the transformation S and
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Figure 1: Cumulative distribution functions of the (a) nor-
mal distribution with µ = 0, σ = 2 (b) exponential distribu-
tion with µ = 2

defined by the equation

∫

A
P f (x)µ(dx) =

∫

S −1(A)
f (x)µ(dx), for A ∈ A. (2)

2.2. Numerical simulations

The space Ch is an infinite dimesional space, thus we
can only investigate the evolution of densities on some sub-
spaces of Ch.

We will analyse the set of trajectories of eq. (1) for con-
stant initial functions, with values distributed with some
initial density. We determine the initial density using in-
verse cumulative distribution functions. Let us take the en-
semble X1, X2, . . . , Xn with density f , that is with the cumu-
lative distribution function F. Now we take Y1,Y2, . . . , Yn

uniformly distributed on (0, 1) and we have

Xi = F−1(Yi) (3)

Let us then determine some distributions for the ensemble
of values of constant initial functions. For example the nor-
mal distribution with mean µ = 0 and standard deviation
σ = 2 and the exponential distribution with mean µ = 2.
The cumulative distribution functions of the normal distri-
bution is

F(x) =
1
2

(1 + erf(
x − µ
σ
√

2
)), (4)

(see Fig. 1 (a)), where erf is the so-called ”error function”.
For the exponential distribution we have

F(x) =

{
1 − e−

x
µ , x ≥ 0

0, x < 0
(5)

(see Fig. 1 (b)). Applying formula (3) we can obtain en-
semble with given distribution. The result can be observed
by displaying the histograms of the locations of the values
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Figure 2: Histogram for the normal distribution of an ens-
able of 197 values of constant initial functions
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Figure 3: Histogram for the exponential distribution of an
ensable of 189 values of constant initial functions

of constant initial functions (Fig. 2 - normal distribution,
of the set of 197 values, µ = 0 and σ = 2, Fig. 3 - ex-
ponential distribution, of the set of 189 values, µ = 2).

Now we can approximate the density function by divid-
ing the number of values in each bin of the histograms by
ε · N, where ε is the width of the bin and N is the total
number of the values in all bins. Fig. 4 (a) shows approx-
imation of initial density for normal distribution and Fig.
5 (a) for exponential distribution. To study the evolution
of this initial densities we calculate the numerical solution
of eq. (1) for all initial functions. For obtained ensam-
bles of solutions we construct the histograms of the loca-
tions of values for the increasing time of simulation. The
histograms are normalized like before to get the approxi-
mation of the evolving density functions. The evolution of
initial density of normal distribution is presented in Fig. 4
(a)-(g) and the exponential distribution in Fig. 5 (a)-(g).
We can see that both initial densities converge to some in-
variant densities, which additionaly seem to be identical.
This results indicate possibility of existence of invariant
measure, for eq. (1), because the system independently on
initial density converge always to the same invariant den-
sity. Numerical solutions of eq. (1) were obtained here
for α = 0.8, ρ = 0.46, γ = 1, s = 8 and delay τ = 10.
Calculations were done using MATLAB’s solver dde23.

3. Final Remarks

Discused measure related with the eq. (1) can be in-
variant and ergodic (see [15]) what is connected with the
chaotic behaviour. In Fig. 6 we have the example of irreg-
ular (chaotic) trajectory obtained for eq. (1) with the values
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Figure 4: Evolution of initial density of normal distribution
(µ = 0, σ = 2). 197 constant initial functions
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Figure 5: Evolution of initial density of exponential distri-
bution (µ = 2). 189 constant initial functions
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Figure 6: Chaotic trajectory of eq. (1)

of parameters the same as for the simulations of evolution
of densities from Fig. 4 and Fig. 5.

Approach to chaotic dynamics, concerning evolution of
densities and existence of invariant and ergodic measures
brings interesting interpretations of behaviour of biologi-
cal systems. It shows that chaos in biological systems can
be related with their properties and not only the with the
difficulties in measuring of very complicated biological pa-
rameters [5].
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