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Abstract—In times past the term signal-analysis was
synonymous with spectral analysis. There is however, a
growing appreciation that most natural phenomena is non-
linear, capable of exhibiting variable, indeed unpredictable
behaviors not able to be expressed meaningfully in har-
monic terms. A relative newcomer to an evolving range
of non-linear tools is the T-entropy, a computable measure
of information content for strings that may be applied to
suitably encoded time-series. This paper highlights firstly
the complementary aspects of the FFT and T-entropy in the
characterisation of time-series but also their respective and
contrasting sensitivities. The simple illustrations provided
here of time-series comprising a mixture of harmonic and
non-stationary components, subject to sampling and coarse
graining, demonstrate effects which complicate interpreta-
tion of particularly the T-entropy results.

1. Introduction

Most engineers and scientists have a well honed intuitive
understanding of harmonic phenomena. The term entropy
does not elicit the same degree of intuition. Many will
correctly associate entropy with descriptions of state; the
lower the entropy, the more predictable the state, the higher
the entropy the more chaotic and less predictable the state.
However, disorder and chaos defy easy visualisation so di-
verse are their possible manifestations. If presented with
disorder, we seek out recognisable structures, the equiva-
lent perhaps of performing a sort of mental FFT but on a
non-stationary data set. More difficult again is the visuali-
sation of comparative differences or changes in variability.
To this end entropy, serves as an important characterisation
for complex processes, albeit a largely unintuitive one.

There exist in the literature some forty or so definitions
of entropy, some related, some not. Only a few of these
have any practical potential. In this paper we confine our-
selves to the T-entropy, a computable symbolic measure not
dissimilar to Lempel and Ziv’s complexity measure for fi-
nite strings [1]. For these measures the complexity of a
finite string x ∈ An is computed in terms of the number-
of-steps required to construct it from its alphabet, A. While
for the LZ76 algorithm, the constituent patterns pi are taken
to be an ordered catenation of prior patterns, identified in
a linear parsing of the string, the T-entropy exploits recur-
sively formed hierarchical-pattern structures of the form:
pi = pmi−1

i−1 · · · pm1
1 ai, where ai, p1 ∈ A. [6] proves that

any x ∈ An is expressible in the form : x = p
kq−1
q−1 · · · pk1

1 a,
a ∈ A, subject to the aforementioned hierarchical con-
straints on pi. The pi may be systematically discovered
by parsing x in a process that runs in O(n log n) time [5].
The T-complexity [6] of x, is defined by way of the pro-
duction steps: CT =

∑
q(ki + 1), and the T-entropy, de-

noted HT , as a linearised rate: HT = li−1(CT )/n. Soft-
ware implementations of the O(n log n) parsing algorithm
are available for computing the T-entropy from strings of
as long as 10’s of millions of symbols. Dynamical sys-
tems, like the logistic map [4], have been used as gener-
ators of strings having known Kolmogorov-Sinai entropy
(K-entropy), to demonstrate that the T-entropy at a practi-
cal level is a strongly indicative measure.

Whereas an FFT may be effective in deriving spectral
components of a structured signal, even in the presence of
noise, it is not effective in characterising the noisy or non-
stationary aspects of a signal. As in the humorous descrip-
tion in which an optimist says of a glass of water that it is
half-full and and the pessimist, that it is half-empty, the FFT
and T-entropy may be seen as describing a given sequence
in complementary terms. The FFT responds to structure,
and the entropy to the “unstructure”. When it comes to
characterising chaotic, random, or non-stationary signals,
an FFT presents as a blunt instrument, and yet we know
now that chaotic signals may provide important indicators
of state in non-linear complex phenomena. It is this that
drives our interest in developing tools to sensitively quan-
tify signal variability.

2. Encoding of Time-Series

The application of symbolic methods to continuous dy-
namical systems is now a fairly standard procedure, the
term symbolic dynamics being introduced by Morse and
Hedlund in the early 1930’s. Symbolic methods are of in-
creasing interest in the analysis of complex time-series in-
cluding medical, seismic, and industrial time series. Coarse
grained encoding of time-series, [yt] through finite parti-
tioning and labeling of the signal space reduces the compu-
tational effort without necessarily compromising the sensi-
tivity of the ensuing analysis. A bipartition may be applied
to encode [yt] as a binary string. The choice of partition and
alphabet size etc, generally revolves around maximising the
symbolic-entropy, i.e., encapsulating the full dynamics. In
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the absence of knowing an optimum partition [3], entropy
values may be computed over a range, for example sweep-
ing a bipartition, b! (! = 1, 2, 3 . . .) across the whole signal
range to obtain an entropy profile. An adaptation of this
is to further catenate the sample strings from each level to
obtain a single sample string for a given window position.
In this paper we use a swept bipartition resulting in a 3D
depiction of an entropy surface, as in Fig 1.

Here the process of partitioning and windowing is illus-
trated using a uniformly distributed random series confined
to the unit interval. The sample strings resulting from each
partition level and window position are used to compute
T-entropy values then plotted as a 3D surface, that has on
one axis, time, and on the other, the partition levels. The
surface profile responds to the distribution of the localised
time-series, subject to the conditioning of the samples over
time. Fig. 1 (middle) shows that the profile for the uni-
formly distributed random series closely resembles the in-
verted ‘parabolic’ function identified by Shannon in [2].
Fig. 1 (lower) compares the profile for three such distribu-
tions. In summary, the T-entropy profile offers a attractive
means for visually scoping real data series as a function of
time [7] [8].

3. Simulated Sources

By multiplexing scaled distributions from; (i) uniformly
distributed values on the unit interval, and (ii) the logistic
iterates (yt = r yt−1(1 − yt−1), y0 ∈ [0, 1], r = 4 ) and
(iii) a combination of these, a test “noise”-source is simu-
lated for a comparison of the FFT and T-entropy measure.
Fig. 2 (top) shows the T-entropy surface computed for (iii),
using overlapping windows, width W = 500 points, and
increments ∆W = 30 points. The resultant surface may
be viewed in 3D under varying lighting conditions but here
a 2D projection serves to illustrate an obvious sensitivity to
changing source characteristics. Fig. 2 (bottom) shows the
corresponding spectra computed using an FFT with simi-
larly overlapping sliding windows. This yields almost no
discernible spectral sensitivity to the individual contrasting
sources, but a slight variation to the average energy shifts
and changes in signal amplitude.

The FFT’s forte is its ability to respond to strong spectral
content. We expect the T-entropy to be much less respon-
sive to periodic content. Our second test signal comprised
a single tone, with and without added noise, for each of
the two “noise” sources (i) & (ii). Fig. 3 (top left) was
the result of applying the FFT by way of a sliding win-
dow to a sampled pure tone, with a frequency 0.6R/2, R
being the sampling rate. In Fig. 3 (top right) the noise am-
plitude (peak-to-peak) was 0.5A where A is the amplitude
(peak-to-peak) of the tone. The surfaces were visually in-
distinguishable for each of the respective “noise” sources
(and so we include representative examples only) confirm-
ing the FFT to be ineffective in characterising the noise
component in the signal. Fig. 3 (bottom) displays the con-
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i.e., encapsulating the dynamics. In the absence of know-
ing an optimum partition [3], entropy values may be com-
puted over a range, for example, sweeping a bi-partition,
b! (! = 1, 2, 3 . . .) across the whole signal range to obtain
an entropy profile. An adaptation of this is to further cate-
nate the sample strings. However we shall limit ourselves
to using a swept bi-partition as illustrated in Fig 1.

Fig. 1 illustrates the process of partitioning and window-
ing an example time-series, here a uniformly distributed
random variable on the unit interval. The strings arising at
each partition level, and at each window position yield T-
entropy values that may be plotted as a 3D surface. The sur-
face profile is found to sensitively reflect the distribution of
the time-series and conditioning of the samples over time.
For the example shown the profile approaches the inverted
‘parabolic’ profile identified by Shannon [2]. Time series
may exhibit contrasting profiles that are source dependent.
In this respect the entropy profile is a powerful means for
investigating and scoping real data series [7] [8].

3. Simulated Sources

By multiplexing scaled distributions from; i) uniformly
distributed values on the unit interval, and ii) the logis-
tic iterates (r = 4) and iii) combinations of these, a test
“noise”-source may be simulated, with which to compare
the FFT and T-entropy measures. Fig. 2 (top) shows the
T-entropy surface computed for our test series, computed
from overlapping windows, width W = 500, and incre-
ments ∆W = 30 points. The surface may be viewed in
3D, but even in this 2D projection illustrates a sensitivity to
the changing source characteristics. Fig. 2 (bottom) shows
the corresponding spectra computed from the application
of the FFT also using a sliding window. It is much less
responsive to the variations in the “noise” signal although,
adjusting lighting and surface colouring helps somewhat.
These variations almost certainly reflect energy differences
in the source rather than shifts in the noise distributions.

The FFT is nonetheless suited to identifying the spec-
tral content. Our second test signal comprised a single tone
combined with/without added noise. To make this more
interesting we used the two test “noise” sources i) & ii).
Fig. 3 (top left) is the result of applying the FFT by way
of a sliding window, to the pure tone series, frequency of
0.6R/2, sampled at the rate R. Noise was added with an
amplitude (peak-to-peak) of 0.5 that of the tone amplitude.
The time-frequency surface was observed however to be vi-
sually indistinguishable for the two “noise” functions, con-
firming the inability of the FFT to usefully characterise the
noise component of the signal. Fig. 3 (bottom) displays
T-entropy surfaces computed for the same test series. The
contrast between the surfaces is striking. Firstly we see that
the entropy of the pure tone is essentially zero as expected.
We noted a sensitivity exists in relation to the frequency
of the tone, e.g., 0.6R/2 or 0.633R/2 respectively. Sur-
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Figure 1: Top: depicting a random time-series uniformly dis-
tributed on the unit interval. The series is encoded by way of a
swept bi-partition and sliding window. Middle: The T-entropy is
computed for each sample string and resultant array plotted as a
surface. The height of the surface is the T-entropy at the posi-
tion of the window and partition respectively. Bottom: A time-
series results in its own distinctive profile: i) a uniform distribu-
tion, ii) iterates from the logistic map (r=4.0), and iii) a random
β-distributed series. Thus the T-entropy provides a practical way
for visually scoping time-series.
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T-entropy surface computed for our test series, computed
from overlapping windows, width W = 500, and incre-
ments ∆W = 30 points. The surface may be viewed in
3D, but even in this 2D projection illustrates a sensitivity to
the changing source characteristics. Fig. 2 (bottom) shows
the corresponding spectra computed from the application
of the FFT also using a sliding window. It is much less
responsive to the variations in the “noise” signal although,
adjusting lighting and surface colouring helps somewhat.
These variations almost certainly reflect energy differences
in the source rather than shifts in the noise distributions.

The FFT is nonetheless suited to identifying the spec-
tral content. Our second test signal comprised a single tone
combined with/without added noise. To make this more
interesting we used the two test “noise” sources i) & ii).
Fig. 3 (top left) is the result of applying the FFT by way
of a sliding window, to the pure tone series, frequency of
0.6R/2, sampled at the rate R. Noise was added with an
amplitude (peak-to-peak) of 0.5 that of the tone amplitude.
The time-frequency surface was observed however to be vi-
sually indistinguishable for the two “noise” functions, con-
firming the inability of the FFT to usefully characterise the
noise component of the signal. Fig. 3 (bottom) displays
T-entropy surfaces computed for the same test series. The
contrast between the surfaces is striking. Firstly we see that
the entropy of the pure tone is essentially zero as expected.
We noted a sensitivity exists in relation to the frequency
of the tone, e.g., 0.6R/2 or 0.633R/2 respectively. Sur-
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Figure 1: Top: depicting a random time-series uniformly dis-
tributed on the unit interval. The series is encoded by way of a
swept bi-partition and sliding window. Middle: The T-entropy is
computed for each sample string and resultant array plotted as a
surface. The height of the surface is the T-entropy at the posi-
tion of the window and partition respectively. Bottom: A time-
series results in its own distinctive profile: i) a uniform distribu-
tion, ii) iterates from the logistic map (r=4.0), and iii) a random
β-distributed series. Thus the T-entropy provides a practical way
for visually scoping time-series.

T
-e

n
tr

o
p
y

partition

uniformly distributed 

random

0 1

0

Logistic map r=4

ß-distribution

Figure 1: Top: depicting a random time-series uniformly dis-
tributed on the unit interval. The series is encoded by way of a
swept bipartition and sliding window. Middle: The T-entropy is
computed for each sample string and resultant array plotted as a
surface. The height of the surface is the T-entropy at the position
of the window and partition respectively. Bottom: A time-series
results in its own distinctive profile: i) a uniform distribution, ii)
iterates from the logistic map (r = 4.0), and iii) a random β-
distributed series. Thus the T-entropy provides a practical way
for visually scoping time-series.
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Figure 2: Multiplexed noise sources: (top) entropy surface, (bot-
tom) FFT frequency-time series.

trasting T-entropy surfaces for the same pair of tests. The
surfaces (left/right) are strongly indicative of the noise, but
also we see a new source of variation. In shifting the fre-
quency of the test tone from 0.6R/2 or 0.633R/2 we create
a time varying relationship between the sample times and
phase of the tone. This is already marginally apparent as
surface texture (Fig. 3, bottom-left) but is strongly ampli-
fied with the addition of the noise. The dramatic increase in
sensitivity to the spectral shift in the raised surfaces to the
right appears as a manifestation of a stochastic resonance.
Whereas the profiles for the noise distributions in Fig. 1
lent themselves to ready interpretation, here the addition
of a single structured tone yield profiles exhibiting spectral
sensitivity that seem to defy easy interpretation.

Our next experiment involves two time-multiplexed
tones. There are no surprises in the spectral surfaces in Fig.
4 (top). The T-entropy surfaces are computed using two
contrasting sized windows. The shorter of the two win-
dow sizes gives a more responsive resolution of the tran-
sient changes as the tones are switched on/off, but show
artifacts from the mixing of the discretely sampled pair of
frequencies. The dimensions of the resultant surface fea-
tures are primarily a reflection of the choice of window
size. With noise added, the surface takes on a more com-

(window sizes 1024)

ti
m

e

frequency 

(Hz)

0

R 0

2

R
2

frequency 

(Hz)

with 
noise

without 
noise

power

time

time

0.6  R/2

0.633  R/2

with noise
without noise

0

0

(window sizes 10000)

T-entropy

Figure 3: Applying the FFT (top) and the Tentropy (bottom) to
a source comprising a singe tone with/without added noise

plicated profile, again strongly influenced by the structured
component. How should this be interpreted? Again, these
are seen as sensitive to the frequency (e.g.0.6R/2 versus
0.633R/2), compounding their interpretation. Extending
the window size allows one to average the T-entropy yield-
ing profiles that bear a striking similarity to those derived
from experimentally recorded EEG [7]. Thus EEG may
well turn out to comprises a superposition of relatively sta-
ble harmonic components together with the more complex
additive “noise” from non-linear sources.

A further experiment involves a simple swept-frequency
tone. Fig. 5 (top) illustrates effects when computing
the FFT, arising in relation to contrasting window sizes.
Top left, a relatively small window (256 points) results in
the modulation of the peak amplitude, sensitivity to the
local phasing of tone and the FFT window. The aver-
aging implicit from a larger window results in a smear-
ing/broadening of the spectral peak. The choice of window
width may be critical when it comes to scoping data with
the T-entropy measure as well. For the T-entropy a swept
tone represents a non-stationary signal, with its variability
further underscored by relative changes in the phasing of
the sampling and tone cycle. A modulated tone is precisely
the way we exchange information over a communications
channel. We expect a raised entropy value. The choice of
the window width determines time sensitivity to local en-
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Figure 4: Modulated pair of tones, with/without added noise. At
top: spectral surfaces, and at bottom: entropy surfaces.

tropy rate changes, as in EEG signals.

4. Concluding Remarks

This paper briefly compared the FFT and T-entropy with
a range of contrived “test” signals. While at the outset we
suggested the FFT and T-entropy might be viewed as pro-
viding complimentary descriptions of times series, the re-
ality is that signals comprising a substantive mix of har-
monic and chaotic components present considerable chal-
lenges when it comes to interpreting them. This seems es-
pecially so for the T-entropy results. It is simply not suf-
ficient to assume that a T-entropy surface profile will be
indicative of the random noise aspects of a series alone.
For this reason we must develop sampling and encoding
strategies, which help to separate out the effects of mixing
spectral and structured components from the chaotic com-
ponents. These simple examples lead us to conclude that
it may be advantageous to apply subtractive smoothing fil-
ters to eliminate harmonic effects, prior to encoding and
application of the T-entropy computation.
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