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Abstract—Novel methods have been proposed to ana-
lyze nonlinear dynamical systems using the complex net-
work theory. In these methods, time series are transformed
to complex networks and the networks are analyzed by the
methods based on the complex network theory. In this pa-
per, we propose an opposite direction of these methods: we
transform complex networks to time series by using classi-
cal multidimensional scaling which is one of the multivari-
ate analysis methods. Then, we analyze transformed time
series using the nonlinear time series analysis methods.
In numerical simulations, using two mathematical models
which can generate regular, random, and small-world net-
works, we examine the characteristics of the transformed
time series from these two network models. We show
the structural difference between two small-world networks
generated from the two different models. This result indi-
cate that our method can reveal a hidden structural property
in the complex networks.

1. Introduction

The complex network theory has emerged in 1998 as a
new theory for analyzing various real networks from sev-
eral fields, for example, biology, sociology, physics, and
so on. Recent studies on complex networks have revealed
structural features of real networks [1, 2]. Then, various
methods for analyzing complex networks have been pro-
posed [1, 2].

On the other hand, the nonlinear dynamical system
theory has already established essential philosophy and
methodology to analyze complex phenomena in the real
world: complicated behavior could be produced from a low
dimensional nonlinear dynamical system. Then the non-
linear time series analysis methods based on the nonlinear
dynamical system theory have been applied to various com-
plex phenomena observed in the real world.

Recently, novel methods for analyzing the nonlinear dy-
namical systems using the complex network theory have
been proposed [3–7]. In Refs. [3–7], nonlinear time series
are transformed to complex networks, and the transformed
networks are analyzed by the methods of the complex net-
work theory. These results suggest that analyses of time
series through the complex network theory offer a differ-
ent viewpoint from conventional methods in the nonlinear

dynamical theory.
In this sense, we can expect that an opposite direction of

these methods [3–7], which transforms complex networks
to time series, can also give important but different view-
points to elucidate hidden properties in complex networks.

In Ref. [8], we have already proposed a method to
transform complex networks to time series using the classi-
cal multidimensional scaling (CMDS) [9, 10] and reported
preliminary results with the linear spectral analysis. CMDS
is one of the multivariate analysis methods. It provides
m-dimensional coordinate values from the distance infor-
mation between each element. Then, we use the adja-
cency information of two nodes in complex networks as the
distance information and obtain m-dimensional coordinate
values from the distance information through CMDS. We
treat the transformed coordinate values from the complex
networks as time series.

In this paper, we use two mathematical models of the
small-world network: the Watts and Strogatz (WS) model
[11] and the Newman and Watts (NW) model [12]. We first
transform these two models into time series and analyze the
transformed time series using a nonlinear time series pre-
diction method. We apply the method of analogues [13] to
the time series generated from the WS and NW models and
investigate the difference between the WS model and the
NW model from the viewpoint of nonlinear predictability.

The results show that the transformed time series exhibit
different nonlinear predictability. If we use conventional
measures in the complex network theory, the clustering co-
efficient and the characteristic path length, it is shown that
a network generated from the WS model and that from the
NW model have almost the same structural property. Then,
these results indicate that the proposed method could be a
possible tool to distinguish a slight structural difference in
complex networks which would appear the same tendency
only through the complex network theory.

2. Two mathematical small-world network models

In this section, we introduce two mathematical complex
network models, the WS [11] and the NW [12] models,
and explain their differences. These two mathematical net-
work models can reproduce the small-world property. At
the initial state, these two mathematical models are equiv-
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alent: namely, they are regular networks with n nodes and
k edges. However, the procedure for generating the small-
world networks are different. In the WS model, each edge
in an initial regular network is randomly rewired with a
probability p. On the other hand, in the NW model, new
edges are randomly added to an initial regular network with
a probability p. Namely, no edges are removed from the
initial regular network. Then, the average degree of the NW
model becomes k(1 + p). In Fig. 1, we show the cluster-
ing coefficient C(p) and the characteristic path length L(p)
of the WS model and the NW model for the probability p,
where C(p) and L(p) are normalized by C(0) and L(0).
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Figure 1: The results of C(p) and L(p) of (a) the WS model
and (b) the NW model for the probability p.

In Fig. 2, we show the difference of C(p) and L(p) be-
tween the WS model and the NW model. From Figs. 1
and 2, C(p) and L(p) of the two models take very close
values when p ≤ 0.01. However, the values of C(p) of
the WS model decrease when p > 0.01 and the difference
of C(p) and L(p) between two models increases as p in-
creases. The main reason is that the initial regular network
is almost destroyed in the WS model when the probabil-
ity p approaches unity but completely remains in the NW
model.

3. Proposed method

We use the CMDS [9] to realize the transformation from
complex networks to time series. If the distances be-
tween elements are given, the CMDS determines multi-
dimensional coordinates for each element so that the dis-
tance information between any two elements in the Eu-
clidean space is preserved. Here, the distance informa-
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Figure 2: Difference of (a) C(p) and (b) L(p) between the
WS model and the NW model. The abscissas represent the
probability p, and the ordinates represent the difference of
C(p) and L(p).

tion is given by a matrix form, called a dissimilarity ma-
trix D = (di j). In our method, we produce the dissimilarity
matrix D from the adjacency matrix of a complex network,
A = (ai j), according to the following rules:

di j =


0 (i = j)
w (ai j = 0, i , j)
1 (ai j = 1),

(1)

where w is a weight of distance between each pair of dis-
connected node and must be larger than 1. Applying the
CMDS to the dissimilarity matrix D generated by the rules
in Eq. (1), we can obtain the m-dimensional coordinate
values of each node which preserve the adjacency informa-
tion of the original complex network. In CMDS, the m-
dimensional coordinate values are given as m eigenvectors
of the matrix − 1

2 JD(2)J, where J is the centering matrix and
defined by J = In−n−11n1ᵀn , In is the identity matrix of size
n, 1n is a vector of n ones, and D(2) = (d2

i j). After the above
procedure, we regard each obtained coordinate value as a
time series. Then we analyze the transformed time series
using the nonlinear time series prediction.

In this paper, we use the method of analogues [13] to
evaluate transformed time series from complex networks.
After predicting time series using the method of analogues,
we evaluate nonlinear prediction accuracies [14] to distin-
guish the transformed time series.
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4. Experiments

At first, as the initial network for the WS and NW mod-
els [11, 12], we generate the regular network in which the
number of nodes is 1,000 and each node has 10 edges.
Next, we generate three types of networks from the WS
and NW models with the probability p = 0.0, 0.1, and 1.0.
Then, we apply our proposed method to these three net-
works and analyze using the nonlinear prediction [13]. In
the following experiments, we use the first half of the time
series as a database to construct a predictor. We use the
eigenvector corresponding to the 10-th eigenvalue as the
time series because the time series has a sufficient number
of period and the 10-th eigenvalue has a high contributing
rate.

Next, we apply the nonlinear prediction to the obtained
time series to precisely quantify the time series. In this
experiment, we generate three networks from the WS and
NW models with the probability p = 0.0001, 0.001, and
0.01. Then, we examine whether the structural difference
between two different models are distinguishable or not,
because C and L of the two models are very similar and
indistinguishable with these probabilities.

5. Result

In Fig. 3, we show the time series transformed from the
networks generated from the WS and NW models. From
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Figure 3: Time series obtained from the WS model with
the probability p = (a) 0.0, (c) 0.1, and (e) 1.0. Time series
obtained from the NW model with the probability p = (b)
0.0, (d) 0.1, and (f) 1.0.

Fig. 3, the time series transformed from the regular net-
works (Figs. 3(a) and (b)) show periodic behavior and
those from the random networks (Fig. 3(e)) show random

behavior. In addition, the time series transformed from the
small-world networks exhibit noisy periodicity. The time
series becomes noisy depending on the probability p. If the
probability increases, the strength of noise becomes strong.
Comparing the time series of the WS model with the time
series of the NW model, we can confirm that the time series
of the WS model are more noisy than the time series of the
NW model. The reason comes from the fact that the NW
model includes a regular structure completely.

Next, we show the results of nonlinear predictions for the
time series transformed from the networks of the WS and
NW models by using various values of probability p. In
Fig. 4, we show the results for the time series transformed
from the networks with p = 0.0, 0.1, and 1.0.
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Figure 4: Correlation coefficients r between original time
series and predicted time series of (a) the WS model and (b)
the NW model shown in Fig. 3. The vertical and horizontal
axes represent the correlation coefficient and the prediction
step, respectively.

In Fig. 4 (a), it is clearly shown the time series of the
WS model shows a phase shift from periodic to random
phase as the increase of the probability p. However, differ-
ent from the WS model, the results of nonlinear prediction
for the NW model show that the time series of p = 1.0
shows periodic behavior. We think that he difference of
prediction results between these two models comes from
the difference of production process in these models, as the
rewiring and addition of edges.

Finally, we show the prediction results for the WS and
NW models with p = 0.0001, 0.001, and 0.01 (Fig. 5). As
previously mentioned, although networks of the two mod-
els are almost indistinguishable by the measures, C and L
(see Figs. 1 and 2), the network structures of these two
models are different each other. In Fig. 5, we show the
prediction results of the time series generated from these
networks, where the prediction results are averaged over
50 simulations.

From the prediction results of the NW model, it appears
that the prediction accuracy is better than that of the WS
model. This reason might come from the fact that the net-
works generated from the NW model preserve the struc-
ture of the initial regular network. These results indicate
that even if a structure of two networks is very similar
from the viewpoint of the conventional measures, the clus-
tering coefficient C and the characteristic path length L,
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Figure 5: Prediction results for the time series obtained
from the WS model and the NW model with different prob-
abilities: (a) p = 0.0001, (b) p = 0.001, and (c) p = 0.01.
In each plot, red circles are the results for the WS model
and blues ones for the NW model.

our method could distinguish the small structural difference
among these networks.

6. Conclusion

We proposed a method in which a complex network is
transformed to a time series. We applied the method to two
mathematical models; the WS model and the NW model.
As a result, the time series transformed from regular net-
works show periodic property. In addition, our method
transforms the network generated with the edge-rewiring or
edge-adding processes into noisy periodic or random time
series.

Next, we applied the nonlinear prediction method to the
transformed time series. The prediction results indicated
that the time series transformed from regular networks are
periodic and those from random networks are random. On
the other hand, the time series generated from neither reg-
ular nor random networks are noisy periodic. Even if the
networks have very similar C and L, we can predict which
model is the origin of the time series. From these results,
the time series obtained by our method well reflects orig-
inal network structure even if the difference between two
networks is very small.
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