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Abstract—Recently, novel approaches have been
proposed to analyze nonlinear time series using the
complex network theory. In these approaches, time se-
ries are transformed to networks and analyzed by the
complex network theory. We have already proposed
a recurrence-plot based method to construct networks
from attractors of nonlinear dynamical systems or re-
constructed attractors from time series and showed
that the networks constructed from chaotic attractors
become the small-world networks. Here we show that
the small-world property emerges in several chaotic
dynamical systems. We also investigate the influence
of dynamical noise injected to the dynamical system on
networks constructed from attractors generated from
these dynamical systems.

1. Introduction

Recent studies based on the analyses of nonlinear
dynamical systems using the complex network theory
have reported various relationships between nonlinear
dynamics and complex networks [1–4]. In these meth-
ods, the networks are constructed from time series
and the constructed networks are analyzed through
the complex network theory. The construction meth-
ods of networks are classified into two types based on
whether the time series is analyzed in the temporal
domain or not. For example, in Ref. [1], a pseudo-
periodic time series is divided by its extrema to deter-
mine its periods and the divided time series is recog-
nized as a node in a network. The method in Ref. [2]
also directly transforms a time series waveform to a
network by using the visibility relation between two
values in the time series. Although these methods can
reflect the dynamical behavior of the time series, it
is not so easy to capture the topological features of
the dynamics which produces complecated time series.
In this sense, the construction method using the re-
currence plot can be an effective and important tool
to reveal the topological structures of nonlinear dy-
namics [3–5] because these methods analyze the net-
works constructed from attractors reconstructed from
time series based on the embedding theorem [6]. Al-
though the construction methods in Refs. [3, 4] are
essentially the same, the strategy for analyzing the
constructed networks are different. In Ref. [4], the

networks constructed from various types of the attrac-
tors are grouped by the rank of the network motif [8].
On the other hand, in Ref. [3], basic statistics such as
the clustering coefficient and the characteristic path
length are used to analyze the networks constructed
from attractors through the bifurcation phenomenon
of the nonlinear dynamical system, (the Rössler system
is used in Ref. [3]), and showed that the networks con-
structed from chaotic attractors have the small-world
property. In Ref. [5], it is also shown that fit-get-rich
networks are emerged from chaotic attractors.

In this paper, we show that the emergence of the
small-world property from the chaotic attractors is
universal property observed in the constructed net-
works. We further investigate the structural features
of the networks constructed from the attractors under
more realistic conditions in which the dynamical noise
is injected to the dynamical system.

2. Method

We first construct a network from an attractor. A
method for constructing networks is the same as gener-
ating the recurrence plot [9]. Let us describe x(i) (i =
1, . . . , N) the ith point on the attractor produced from
a dynamical system. The distance between x(i) and
x(j) is defined by dij = |x(i) − x(j)|. Here, let rij be
the (i, j)th entry of a two-dimensional N × N square
matrix R. The algorithm for generating the recurrence
plots is described as follows:

1. Select the ith point x(i) and calculate dij for all
j.

2. Select M nearest neighbor points of x(i). These
points are described as x(k1), . . . , x(kM ).

3. Set rij = 1 if j ∈ Ii and rij = 0 if j /∈ Ii where
Ii is a set of indices of the selected M nearest
neighbor points {k1, . . . , kM}.

4. Repeat steps 1 to 3 for all i.

5. Symmetrize the matrix R. Namely, for all pairs i
and j, if rij = 1, then rji = 1.

We regard this matrix R as an adjacency matrix of the
network. Next, we evaluate the network using two ba-
sic measures of the complex network theory, clustering
coefficient C and characteristic path length L [3].
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2.1. Measures of the complex network theory

The clustering coefficient and the characteristic path
length [10] are fundamental measures to evaluate the
characteristic properties in the complex network the-
ory [10]. In particular, the small world property of the
networks can be evaluated by the clustering coefficient
and the characteristic path length.

The clustering coefficient is defined as follows:

C =
1

N

N
∑

i=1

Ci, Ci =
li

ki
C2

, (1)

where ki is the number of adjacent nodes of the ith
node, li is the number of connections between the ad-
jacent nodes of the ith node, and N is the number of
nodes. The clustering coefficient shows a local connec-
tivity among any three nodes in the network.

The characteristic path length is defined as follows:

L =
1

N(N − 1)

N
∑

i=1

N
∑

j=1,i6=j

dij , (2)

where dij is the shortest path length between the ith
and the jth nodes. The characteristic path length
shows global accessibility of the network.

If a network has a high clustering coefficient and
small characteristic path length, the network has the
small world property. Such a network is called a small
world network.

3. Chaotic attractors have small-world prop-

erty

To investigate the universality of emergence of the
small-world property from the chaotic attractors, we
introduce three mathematical models: the Rössler sys-
tem [11], the Lorenz system [12], and the Chua circuit
[13] and conducted the same experiments as Ref. [3].
The Rössler system is described by







ẋ = −(y + z),
ẏ = x + 0.2y,
ż = 0.2 + z(x − c).

(3)

The Lorenz system is described by







ẋ = −10x + 10y,
ẏ = −xz + 28x − y,
ż = xy − bz.

(4)

The Chua circuit is described by







ẋ1 = α(x2 − h(x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = − 100

73 x2.
(5)

where

h(x1) =







− 5

7
x1 + − 3

7
, x1 ≤ 1

− 8

7
x1, |x1| ≥ 1

− 5

7
x1 + 3

7
, x1 ≥ −1.

(6)

We investigate characteristic structural properties of
the constructed networks through the bifurcation
structure: we vary the parameter c in Eq. (3), b in
Eq. (4), and α in Eq. (5). For each parameter, we cal-
culate C and L of the constructed networks from the
attractors. Throughout this paper, we set the number
of nodes N = 12, 000, the number of adjacent nodes
M = 20, and the time step of the numerical integra-
tion δt = 0.01. Both C and L are normalized by the
largest value.

We first analyze the networks constructed from the
Chua circuit with network size N . In Fig. 1(a), the
clustering coefficient C of the periodic attractors shows
a similar tendency if the number of nodes N increases,
and the chaotic attractor also takes similar values of
C to the periodic ones. In addition, in Fig. 1(b),
although the periodic attractors have large character-
istic path length L but the chaotic ones keep small
values of L when the number of nodes N increases.

From Figs. 1(a) and (b), the networks constructed
from the chaotic attractors gradually converged to a
small world network when the size of networks N be-
comes large.

Figure 2 shows the results of normalized values of
the clustering coefficients C∗ and the characteristic
path length L∗ with the bifurcation diagrams of (a)
the Rössler system, (b) the Lorenz system, and (c)
the Chua circuit. The upper figures of Figs. 2 (a),
(b), and (c) are the bifurcation diagrams. In each
figure, to generate the bifurcation diagrams, we ex-
tracted the local maxima of the first variables of Eqs.
(3), (4), and (5), and the nth maximum is plotted.
From Fig. 2, we can see that both C∗ and L∗ take
large values for the periodic attractors. On the other
hand, in the chaotic regions, C∗ becomes large but L∗

becomes small. Then, we can confirm that the chaotic
attractors generated from these mathematical models
have the small-world properties.

4. The small-world property and dynamical

noise

To investigate how the dynamical noise influences
the small-world property of the networks constructed
from the chaotic attractors, we conducted the same
experiments with the following noisy Rössler system:







ẋ = −(y + z) + ηx(σ),
ẏ = x + 0.2y + ηy(σ),
ż = 0.2 + z(x − c) + ηz(σ),

(7)
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(b) characteristic path lengths

Figure 1: Results of (a) the clustering coefficients C
and (b) the characteristic path lengths L in case of
increasing N for the Chua circuit. In these results,
the number of adjacent nodes is fixed: M = 20.

where ηx(σ), ηy(σ), and ηz(σ) are dynamical noises
whose average and variance are zero and σ. To evalu-
ate structural properties of the constructed networks
through the bifurcation, we varied the parameter c in
Eq. (7).

Figure 3 shows the results of C∗ and L∗ with the
bifurcation diagram for the noisy Rössler system (Eq.
(7)). The upper figures of Fig. 3 show the bifurcation
diagrams. Figures 3 (a), (b), and (c) show the results
of the three cases of σ = 0.1, 0.4, and 0.9, respectively.
From the bifurcation diagram in Fig. 3 (b), we can see
that the original bifurcation structures are destroyed.
In particular, periodic windows disappear when the
dynamical noise is added. Although the periodic win-
dow is invisible, the results of L∗ show remarkable
changes in the regions where the periodic window exist
in the original diagram; for example c = 4.4, 4.7, and
6.0. If the amount of the dynamical noise increases,
these changes of L∗ become small. In addition, C∗ and
L∗ gradually take small values if the dynamical noise
increases.

From Fig. 3, we can also confirm that L∗ tends
to decrease when the parameter c approaches bifur-
cation points. The decrease of L∗ is generally caused
by increase of short-cuts in the network. The results
of Figure 3 indicate that the number of the short-cuts
in the networks constructed from the attractors in-
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Figure 2: The results of the clustering coefficients
C∗ and the characteristic path lengths L∗ for (a) the
Rössler system, (b) the Lorenz system, and (c) the
Chua circuit. The upper figures are bifurcation dia-
grams of each system.

creases when the parameter value moves close to the
bifurcation points. Then, it is considered that the net-
works constructed from the periodic attractors become
sensitive to the dynamical noise as the parameter c
approaches the bifurcation points and those networks
reflect this sensitivity by the increase of short-cuts.

5. Conclusion

In this paper, we used several mathematical models
of nonlinear dynamical systems and evaluated whether
the networks constructed from the chaotic attractors
have the small-world property or not. As a result,
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(c) σ = 0.9

Figure 3: Averaged values of the clustering coefficients
C∗ and the characteristic path length L∗ for 10 simu-
lations.

we showed that the chaotic attractors have the small-
world property. In the experiments using the noisy
Rössler system, we showed that the networks con-
structed from the chaotic attractors lose the small-
world property. However, we also find that the dynam-
ical noise injected to the dynamical system increases
short-cuts in the networks constructed from attractors.

To elucidate the relationship between the chaotic at-
tractors and complex networks, one of the important
strategies is to involve the information about temporal
evolutions of attractors into the proposed method and
evaluate the constructed networks through the evolu-

tion processes of the networks [5].
The research of TI is partially supported by a Grant-

in-Aid for Exploratory Research (No. 20650032) from
JSPS.
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