
Multi-way Nonnegative Tensor Factorization Using Fast Hierarchical

Alternating Least Squares Algorithm (HALS)

Anh Huy PHAN and Andrzej CICHOCKI

RIKEN Brain Science Institute, Wako-shi, Saitama, JAPAN

Email:{phan, cia}@brain.riken.jp

Abstract— In this paper we derive a new fast and effi-

cient iterative algorithm for N-th order Nonnegative Tensor

Factorization (NTF). We propose to use a set of local cost

functions whose simultaneous or sequential (one by one)

minimization via a projected gradient technique leads to

simple and very efficient algorithm. The proposed algo-

rithm exploits nonlinear projected gradient and fixed point

approaches and it is a natural extension of our Hierarchical

- Alternating Least Squares (HALS) algorithm developed

for Nonnegative Matrix Factorization (NMF) and NTF2 [1]

for sparse and noisy data. In the special case, the proposed

algorithm reduces to an improved fast HALS algorithm for

the standard NMF. Extensive computer simulations con-

firmed validity and excellent convergence properties of the

proposed algorithm.

1. Introduction and Problem Formulation

In this paper, we extend the hierarchical Alternating

Least Squares (HALS) algorithm for NMF [1] proposed by

us recently to a multi-way Non-negative Tensor Factoriza-

tion (NTF). Tensors (also known as N-way arrays or mul-

tidimensional arrays) decomposition and factorization are

used in a variety of applications ranging from neuroscience,

image processing and psychometrics to chemometrics [2,

3, 4, 5]. Non-negative Matrix Factorization (NMF), Non-

negative Tensor Factorization (NTF) and parallel factor

analysis (PARAFAC) models with non-negativity and spar-

sity constraints have been recently proposed as sparse and

quite efficient representations of signals, images, or gen-

eral data [2, 6]. From a viewpoint of data analysis and data

mining, NTF is very attractive, and more accurate than 2D

matrix factorizations, such as NMF, because it takes into

account spatial and temporal correlations between vari-

ables. Moreover, it usually provides sparse common load-

ing factors or hidden (latent) components with physiolog-

ical meaning and interpretation [2]. In this paper we con-

sider the special but very important form of the PARAFAC

model with additional nonnegativity (and optionally spar-

sity) constraints, referred here as the NTF model.

Throughout this paper, common standard notations are

used as indicated in Table 1. In the general case, the NTF

model can be described as a factorization of a given N-
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Table 1: Basic tensor operations and notations

◦ outer product

⊙ Khatri-Rao product

⊗ Kronecker product

⊛ Hadamard product

⊘ element-wise division

[•]r rth column vector of [•]

A
(n)the n − th factor

a
(n)
r rth column vector of A

(n)

{ar}
{
a

(1)
r , . . . , a

(N)
r

}

Y tensor

×n n − mode product of tensor and matrix

×n n − mode product of tensor and vector

Y
(n)

n − mode matricized version of Y

A
⊙

A
(N) ⊙ A

(N−1) ⊙ . . . ⊙ A
(1)

A
⊙−n A

(N) ⊙ · · · ⊙ A
(n+1) ⊙ A

(n−1) ⊙ · · · ⊙ A
(1)

A
⊛

A
(N)
⊛ A

(N−1)
⊛ . . . ⊛ A

(1)

A
⊛−n A

(N)
⊛ · · · ⊛ A

(n+1)
⊛ A

(n−1)
⊛ · · · ⊛ A

(1)

SIR(a,b)10log10(‖a‖2/‖a − b‖2)

PSNR 20log10(Range of Signal/RMSE)

Fit(Y,Ŷ) 100(1 − ‖Y − Ŷ‖2F/‖Y − E(Y)‖2F )

th order tensor Y ∈ R
I1×I2 ···×IN

+ into set of N unknown

component matrices: A
(n)
= [a

(n)

1
, a

(n)

2
, . . . , a

(n)

R
] ∈ R

In×R
+ ,

n = 1, 2, . . . ,N representing the common (or loading) fac-

tors

Y = Ŷ + R =

R∑

r=1

λr a
(1)
r ◦ a

(2)
r ◦ . . . ◦ a

(N)
r + R (1)

= ~λ; A
(1), A(2), . . . , A(N)

� + R = ~λ; {A}� + R, (2)

where Ŷ is an approximation of tensor Y, and R denotes

the residue or error tensor, λ = [λ1, λ2, . . . , λR] ∈ RR
+

are

scaling factors and vectors a
(n)
r are unit length columns

‖a
(n)
r ‖

2
2
= a

(n)⊤
r a

(n)
r = 1. This model can be referred to

CANDECOMP by Carroll and Chang [7], or PARAFAC

by Harshman [8], or Kruskal [9].

The objective is to estimate nonnegative component ma-

trices: A
(n) or equivalently the set of vectors a

(n)
r , (n =

1, 2, . . . ,N, r = 1, 2, . . . ,R).

2. Derivation of FAST HALS NTF Algorithm

Most of the algorithms for the NTF are based on Alter-

nating Least Squares (ALS) minimization of the squared

Euclidean distance [2, 7, 8]. In particular, we can attempt

to minimize the following cost function:

DF(a
(1)

1
, . . . , a

(N)

R
) =

1

2

∥∥∥∥∥∥Y −
R∑

r=1

λr a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r

∥∥∥∥∥∥
2

F

, (3)

subject to some additional constraints such as nonnegativ-

ity and sparsity. In such a case a basic approach to the

above formulated optimization problem is alternating min-

imization or alternating projection: the cost function is al-

ternately minimized with respect to a sets of parameters
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a
(n)
r each time optimizing one vector while keeping the oth-

ers vectors fixed. In this paper, we consider a different ap-

proach: instead of minimizing only one global cost func-

tion, we perform sequential minimization of the set of lo-

cal cost functions composed of the squared Euclidean terms

(and optionally additional regularization terms):

D
( j)

F
(a

(1)

j
, . . . , a

(N)

j
) =

1

2

∥∥∥∥Y( j) − λ j a
(1)

j
◦ a

(2)

j
◦ · · · ◦ a

(N)

j

∥∥∥∥
2

F
(4)

=
1

2

∥∥∥∥Y( j)

(n)
− λ j a

(n)

j

{
a j

}⊙−n⊤
∥∥∥∥

2

F
, (5)

for j = 1, 2, . . . ,R, subject to additional constraints, where

Y
( j)
= Y −

∑

r, j

λr a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r (6)

= Y −

R∑

r=1

λr a
(1)
r ◦ · · · ◦ a

(N)
r + λ j a

(1)

j
◦ . . . ◦ a

(N)

j

= Y − Ŷ + ~λ j, {a j}�. (7)

Note that (5) is the n−mode matricized version of (4). The

gradients of (5) with respect to elements a
(n)

j
are given by

∂D
( j)

F

∂a
(n)

j

= −λ j Y
( j)

(n)

{
a j

}⊙−n

+ λ2
j a

(n)

j

{
a j

}⊙−n⊤
{
a j

}⊙−n

. (8)

Based on the following property of Khatri-Rao product

(
A

(1) ⊙ A
(2)
)⊤ (

A
(1) ⊙ A

(2)
)
=

(
A

(1)⊤
A

(1)
)
⊛

(
A

(2)⊤
A

(2)
)
, (9)

we have
{
a j

}⊙−n⊤
{
a j

}⊙−n

=

{
a
⊤
j
a j

}
⊛−n

= {1}⊛−n = 1. There-

fore, new fixed point learning rules for A
(n) obtained by

equating the gradient (8) to zero are given by

a
(n)

j
← Y

( j)

(n)

{
a j

}⊙−n

/λ j. (10)

Actually, we can neglect the denominator in (10) due to

normalization a
(n)

j
to unit length vectors:

a
(n)

j
← Y

( j)

(n)

{
a j

}⊙−n

, a
(n)

j
= a

(n)

j
/‖a

(n)

j
‖2. (11)

The weight (scaling) factor λ j can be estimated from vec-

tor a
(N)

j
as λ j = ‖a

(N)

j
‖2 before normalizing this vector.

Note that the learning rule (11) has an equivalent expres-

sion given by

a
(n)

j
← Y

( j) ×1a
(1)⊤

j
· · · ×n−1a

(n−1)⊤

j
×n+1a

(n+1)⊤

j
· · · ×N a

(N)⊤

j

= Y
( j) ×−n {a

⊤
j }. (12)

The above updating formula is compact but with high

computational cost. In the following section, we will derive

an efficient realization of this learning rule. From the defi-

nition of Khatri-Rao product and the property that Khatri-

Rao and Kronecker products of two vectors are identical,

we have
[
A

(1) ⊙ A
(2)
]

j
=

[
a

(1)

1
⊗ a

(2)

1
. . . a

(1)

R
⊗ a

(2)

R

]
j
= a

(1)

j
⊙ a

(2)

j
, (13)

Table 2: FAST-HALS NTF

1: Nonnegative random or ALS initialization A
(n) 1

2: Compute λ : λr = ‖a
(N)
r ‖2

3: Normalize all a
(n)
r to unit length

4: T1 = (A
(1)⊤

A
(1)) ⊛ . . . ⊛ (A

(N)⊤
A

(N))

5: repeat

6: for n = 1 to N do

7: T2 = Y(n) {A
⊙−n }

8: T3 = T1 ⊘ (A
(n)⊤

A
(n))

9: for r = 1 to R do

10: a
(n)
r ⇐

[
λr a

(n)
r + [T2]r − A

(n) diag(λ) [T3]r

]
+

2

11: if n=N then

12: λr = ‖a
(N)
r ‖2

13: end if

14: Normalize a
(n)
r to unit length a

(n)
r = a

(n)
r /‖a

(n)
r ‖2

15: end for

16: T1 = T3 ⊛ A
(n)⊤

A
(n)

17: end for

18: until convergence criterion is reached

and in more general case,

{
a j

}⊙−n

=

[
A
⊙−n

]
j
. (14)

By replacing Y
( j)

(n)
in (11) by (7), and taking into account

(14), the learning rule (11) can be expressed as follows

a
(n)

j
← Y(n)

[
A
⊙−n

]
j
− Ŷ(n)

[
A
⊙−n

]
j
+ ~λ j, {a j}�(n)

{
a j

}⊙−n

=

[
Y(n) A

⊙−n

]
j
− A

(n)
DλA

⊙−n⊤
[
A
⊙−n
]

j + λ ja
(n)

j

{
a j

}⊙−n⊤
{
a j

}⊙−n

=

[
Y(n) A

⊙−n

]
j
− A

(n)
Dλ

[
A
⊙−n⊤A

⊙−n

]
j
+ λ ja

(n)

j

=

[
Y(n) A

⊙−n

]
j
− A

(n)
Dλ

[{
A
⊤

A

}⊛−n

]

j
+ λ ja

(n)

j

=

[
Y(n) A

⊙−n

]
j
− A

(n)
Dλ

[{
A
⊤

A
}⊛
⊘
(
A

(n)⊤
A

(n)
)]

j
+ λ ja

(n)

j
, (15)

where Dλ = diag(λ) is a diagonal matrix whose diagonal

entries are λ j.

The equation (15) represents the new fast learning rule

for a
(n)

j
. In combination with a componentwise nonlinear

operator defined as [A]+ = max{0, A} , we finally have a

new algorithm referred as Fast HALS NTF algorithm

a
(n)

j
←

[
λ ja

(n)

j
+

[
Y

(n)
A
⊙−n

]
j
− A

(n)
Dλ

[{
A
⊤

A
}⊛
⊘
(
A

(n)⊤
A

(n)
)]

j

]

+

. (16)

The detail pseudo-code of this algorithm is given in Ta-

ble (2). In a special case of N = 2, FAST-HALS NTF be-

comes FAST-NMF for NMF problem.

2.1. Experiments

Extensive simulations were performed for synthetic and

real-world data on a 2.66 GHz Quad-Core Windows 64-bit

machine with 8GB memory. Results were compared with

1For 3-way tensor, direct trilinear decomposition could be used as ini-

tialization.
2In practice, vectors a

(n)
j

are often fixed sign before rectifying.
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NMWF [3], lsNTF [10] algorithms and also with two im-

plementations of PARAFAC ALS algorithm [7, 8] by Kolda

and Bader [11] (denoted as ALS K) and by Andersson and

Bro [12] (denoted as ALS B) under the same condition of

difference of fit value (1e-5) through three performance in-

dices: Peak Signal to Noise Ratio (PSNR) for all frontal

slices, Signal to Interference Ratio (SIR) for each columns

of factors and the explained variation ratio (Fit) for a whole

tensor.

Two noisy tensors generated by three benchmarks

X spectra sparse, ACPos24sparse10 and X spectra

[6] with size of 300 × 300 × 300 (Example 1(a)) and

500 × 500 × 500 (Example 1(b)) have been corrupted by

Gaussian noise with SNR = 0dB. Illustrations for Example

1(a) with volume, iso-surface and factor visualizations are

given in Fig. 1(b), 1(c) and 1(d); while running time and

distributions of SIR and PSNR indices are depicted in Fig.

2 and also are available in Table 4. Fast HALS provides

high accuracy for factor estimation based on SIR index,

and the highest explained variation with the fastest running

time.

Examples 2-6 show Fast HALS NTF in use with real

world data sets which are described in Table 3. In Exam-

ples 2 and 3, Amino acids fluorescence data from five sam-

ples containing tryptophan, phenylalanine, and tyrosine

(claus.mat) [13, 12] and Sugar process data (sugar.mat)

[4] were corrupted by Gaussian noise with SNR = 0dB be-

fore reconstruction with R = 5 rank-one tensors. Compar-

isons of performance and running time for Example 2 are

illustrated in Fig. 3 (also in Table 5). There are two illustra-

tions of estimated factors for amino acids and sugar tensor

factorized with 3 components by FAST HALS NTF given

in Fig. 4(a) and 4(b), respectively. In Example 4, DOSY

nuclear magnetic resonance lipoproteins [5] 268 × 53 × 7

was factorized with 4 components.

For EEG data, we used two data sets: tutorial-

dataset1.set (Example 5) and tutorialdataset2.-

zip (Example 6) [14]. After pre-processing data set

tutorialdataset1.set by complex Morlet wavelet, it

yields 64 channels × 72 epoches time-frequency spectra of

72 × 61. This data was converted to a 3-way tensor of size

64 × 2769 × 72 before factorizing with 2 components. For

Example 6, its data set contains the inter-trial phase coher-

ence (ITPC) of 14 subjects during a proprioceptive pull of

left and right hand (28 files) and generates tensor 64 × 4392

× 28 [14]. Illustration of this example for FAST HALS

NTF is given in Fig. 5 with scalp topographic maps and

their correspondent IPTC time-frequency measurements.

For real world data sets, standard ALS algorithms re-

turned a slightly higher performance than that of Fast

HALS algorithm. However, their components contain neg-

ative elements in order to enforce them to be orthogo-

nal. Therefore, FAST HALS NTF could be considered to

achieve the highest performance for nonnegative data.

Through these examples, it is shown that FAST HALS

NTF algorithm is robust to noise and produces the best per-

Table 3: Description of data sets and notation of Examples

Exp. Data set Size R

1(a) X spectra sparse, ACPos24sparse10

and X spectra [6]

300 × 300 × 300 4

1(b) 500 × 500 × 500 4

2
Amino acids fluorescence data,

claus.mat [13]
5 × 201 × 61 5

3 Sugar process data, sugar.mat [4] 268 × 53 × 7 5

4 DOSY NMR of lipoproteins, webnmr.mat [5] 25 × 24 × 1600 4

5

64 channels of EEG measurements

64channels × (71 f requency − 39time) ×

72epoches, tutorialdataset1.set [14]

72 × 2769 × 64 2

6

ITPC of 14 subjects during a pro-

prioceptive pull of left and right

hand (28 datasets), 64channels ×

(61 f requency − 72time) × 28sub jects,

tutorialdataset2.set[14]

64 × 4392 × 28 3

Table 4: Performance Comparison for Examples 1(a)-(b)

Exp. FastNTF NMWF 1 lsNTF ALS B ALS K

1(a)

SIR (dB)

A
(1)

A
(2)

A
(3)

44.07 45.35 41.19

44.64 44.80 39.17

41.21 42.36 39.94

42.37 42.76 40.93

A
(1)

A
(2)

A
(3)

43.64 43.30 34.07

44.59 44.93 39.32

40.98 41.45 39.84

42.40 42.31 41.00

A
(1)

A
(2)

A
(3)

43.99 45.43 41.20

44.64 44.81 39.16

41.21 42.40 39.75

42.41 42.75 40.87

A
(1)

A
(2)

A
(3)

43.11 39.38 41.18

44.42 38.95 39.26

37.93 35.21 39.66

42.54 36.83 40.66

A
(1)

A
(2)

A
(3)

43.10 39.72 41.21

44.18 39.00 39.13

37.94 35.23 39.68

41.87 36.92 40.68

Fit (%) 99.9880 99.9832 99.9866 99.9873 99.9872

Time (sec) 6.1290 56.5240 2829.9800 15.0800 36.1116

1(b)

SIR (dB)

A
(1)

A
(2)

A
(3)

47.09 48.14 44.18

50.04 50.45 47.39

46.39 47.75 46.82

47.18 47.43 45.60

A
(1)

A
(2)

A
(3)

47.08 47.45 43.86

45.82 41.78 48.73

46.22 41.42 46.88

45.27 40.98 45.21

7

(fail)

A
(1)

A
(2)

A
(3)

46.66 41.06 44.15

49.23 42.19 47.44

43.51 39.99 44.15

44.19 39.42 45.37

A
(1)

A
(2)

A
(3)

46.71 41.04 44.17

49.16 44.15 47.42

44.48 40.04 44.31

44.44 39.42 45.37

Fit (%) 99.9955 99.9918 7 99.9953 99.9953

Time (sec) 51.7322 513.3666 7 145.7306 965.7621

Table 5: Performance Comparison for Examples 2-6

Fit (%) Time (seconds)

Exp. 2 3 4 5 6 2 3 4 5 6

FastNTF 98.0218 99.1366 99.5027 69.7721 52.4131 0.36 0.46 8.55 4.52 7.08

NMWF 97.8153 99.0940 99.4981 69.7681 52.3806 1.69 6.29 41.64 30.65 58.19

lsNTF 97.6360 98.9133 99.3414 46.3228 51.3317 3.30 38.93 101.70 2667.70 4029.84

ALS B 96.9702 99.0521 99.5053 69.7762 53.1749 0.87 1.42 20.53 14.22 67.24

ALS K 97.0264 99.0812 99.3933 69.7734 53.1336 0.46 0.66 17.19 36.99 66.39

formance with the fastest running time.

3. Conclusions and Discussion

The main objective and motivations of this paper is to

derive fast and efficient algorithm which is suitable to NTF

problem. The extended algorithm FAST-HALS NTF is ver-

ified for many different benchmarks. The developed algo-

rithm is robust to noisy data and has many potential ap-

plications. This algorithm is also suitable to large scale

dataset due to its local learning rules, and fast processing

speed. We can easily increase number of rank one tensors

in processing progress. The algorithm can be extended to

semi-NTF and to sparse PARAFAC using suitable nonlin-

ear projections [15].

1In fact, the NMWF fails for noisy data in Examples 1-3 cause of

negative elements. We enforced the estimated components to have non-

negative values by half-wave rectifying.
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(a) Noisy data (b) Volume 99.99% (c) Iso-surface 99.99%

A
(2)

A
(3)

A
(1)

(d) Factors

Figure 1: Illustration of tensor reconstruction by Fast HALS

NTF for Example 1(a) with tensor Y ∈ R300×300×300
+

degraded by

Gaussian noise with SNR = 0dB.
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(b) Gamma activity of

both stimuli
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(c) Right hand stimuli

Figure 5: Illustration of FAST HALS NTF for Example 6 with

factor A
(1) for scalp topographic map (first row), factor A

(2) for

spectral map (second row) (see [14] for details).
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