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Abstract—Many digital systems employ a spread spec-
trum clock technique for an inherent reduction of the
Electro-Magnetic Interference. Spread Spectrum clocking
consists in a proper modulation of the system clock, thus
reshaping the power density spectrum of all synchronized
digital signal. The aim of this paper is to show that, depend-
ing on the specific setting, very large differences between
the theoretically computed power density spectrum and the
measured one arise. This is an important issue to take into
consideration when a Spread Spectrum system is optimized
for EMI reduction.

1. Introduction

The reduction of the Electro-Magnetic Interference
(EMI) in electronic system is an inherent problem in all
modern digital equipment. In fact digital signals, due to
their sharp edges and their synchronization with a periodic
clock waveform, are preeminent sources of interference,
since they give arise to a large amount of interfering power
in a narrow-band frequency range.

This point of view is coherent with many regulations
[1, 2] which link compliance, or Electro-Magnetic Compat-
ibility (EMC), with the ability to constrain the interfering
power density spectrum (PDS) within a prescribed mask.

The reason why EMI are related to the shape of the inter-
fering signal PDS, in particular to its peak value, is that in
the coupling process between EMI sources and third-party
nearby circuits (EMI victims), these latter can be usually
modeled as a number of narrowband filters, i.e. a victim is
sensitive only in a few frequency ranges. The worst case
scenario is when the PDS of an interfering signal is com-
posed by few components with a high power level (as for
a synchronous digital system) and the largest of them is
exactly located in one of the victim sensitivity frequency
ranges. In this case all its power is transferred to the vic-
tim, potentially yielding to its complete failure.

It is worth noticing that in addition to common solu-
tions to increase the EMC which are based on a-posteriori
methodologies (such as the adoption of filters, shielded ca-
bles and filtered connectors) which aim at reducing the cou-
pling between EMI sources and EMI victims, some design-
time solutions, usually known as spread spectrum clocking

techniques, can be adopted.
Referring to [3], spread spectrum clocking is defined as

“a technique to reduce the emission from all signals syn-
chronized with a clock” and, roughly speaking, consists of
introducing a controlled jitter in the reference clock, thus
avoiding a perfect periodicity of all the synchronized sig-
nals. This gives rise to additional components in the PDS,
while, at the same time, it lowers the power of the already
present ones, with a positive effect in EMI reduction.

In this paper we consider the differences between the
theoretical PDS of a spread spectrum system and the spec-
trum measured according to EMC regulations. This is par-
ticularly import since, despite the fact that most common
way to design a spread spectrum system is to reshape the
theoretical PDS [4, 5], regulations require that measure-
ments are taken in a prescribed setting with an EMI re-
ceiver, (which is an analog Spectrum Analyzer): we can
show that the theoretical spectrum and the measured one
match only for particular cases.

The organization of the paper can be summarized as fol-
lows. The aim of the Section 2 is to provide a brief theoret-
ical background. Here, we first introduce the working prin-
ciple of the analog spectrum analyzer. Then, we consider
a Spread Spectrum clock system based on the Frequency
Modulation (FM) of the clock with a sinusoidal waveform
as driving signal. Despite the fact that this approach is not
commonly used in real systems, where a clock FM with a
triangular waveform [6, 7], a more complex and patented
periodic waveform [3] or a Pulse-Amplitude Modulated
(PAM) waveform [8, 9] is used as driving signal, the si-
nusoidal case is interesting since its theoretical PDS can be
expressed in a simple, closed form. In Section 3 this PDS
is compared with the measured spectrum, and despite be-
ing the latter very complex to compute, we will be able to
easily explain why and under which circumstances differ-
ences exist between the two. Finally in Section 4 we draw
the conclusion.

2. Mathematical Background

2.1. Working Principle of a Spectrum Analyzer

An analog Spectrum Analyzer is based on a superhetero-
dyne receiver as schematized in Figure 1(a). The input sig-
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(a)

(b)

Figure 1: (a) Actual and (b) simplified block diagram of an
analog Spectrum Analyzer.

nal is mixed with a pure tone generated by a local oscilla-
tor to shift it in a lower frequency range and then filtered by
narrow band-pass filter (whose bandwidth is called Resolu-
tion BandWidth, RBW). The resulting output signal is then
demodulated by an envelope detector, low-pass filtered (the
VBW) and its power level is measured by a peak detector.
Note that this must be distinguished from the digital spec-
trum analyzer, or Digital Signal Analyzer, which is based
on the real-time Fourier transform of the sampled input sig-
nal.

By changing the local oscillator frequency, it is possible
to tune a different frequency band on the RBW filter, so that
to measure the spectrum of the input signal, it is enough to
tune the system to all the frequency of interest.

The EMI regulations allows the use of both the quasi-
peak detector and the positive peak detector. For the sake
of simplicity, we consider here only the latter, which esti-
mate the power of the tuned signal as the power of a pure
sinusoidal tone whose amplitude is equal to the maximum
amplitude detected while the system is tuned to a given fre-
quency.

Note that the same measurement results can be achieved
by a system like the one in Figure 1(b), where the signal
is tuned by properly setting the central frequency of the
RBW filter. The VBW filter is not considered since under
the common assumption of VBW > RBW its effect can be
neglected. This will be more clear at the end of Section 3.
In the following, we will always refer to this simplified di-
agram.

A detailed survey on this instrument can be found in
[10], where the RBW filter is assumed as a four-pole sys-
tem, with nearly-Gaussian transfer function

|H( f ; f0,RBW)|2 = 1
(

1 +
(

f− f0
ν0 RBW

)2
)4

(1)

where f0 is the center frequency and ν0=
1

2
√

21/4 − 1
and

the RBW is defined as the −3 dB filter bandwidth.

2.2. Sinusoidal FM

Let us consider here an FM clock signal which, referring
to the first harmonic only, can be written as

s(t) = A cos

(

2π fct + 2πDf

∫ t

−∞
ξ(τ)dτ

)

where −1 < ξ(t) < 1 is the normalized driving signal, and
Df the frequency deviation. It is worth stressing that con-
sidering only the fundamental tone of a timing signal is a
standard practice for EMI measurement purposes, since it
is the harmonic giving rise to highest peaks in the spectrum,
and which is therefore responsible for generating the most
severe EMI components.

When using a sinusoidal waveform as driving sig-
nal, i.e. ξ(t) = cos (2π fmt), we get s(t) =

A cos (2π fct + m sin (2π fmt)), with m = Df / fm is known as
modulation index.

The PDS S ( f ) of s(t) is a discrete spectrum with compo-
nents at all frequencies fc±k fm, ∀k ∈ N, and can be written
using the first kind Bessel Function [11]

S ( f ) =
A2

2

∞
∑

k=−∞
J2

k (m) δ

(

f − fc −
k

m
Df

)

(2)

3. Comparison between Theoretical Spectrum and
Measured One

The theoretical spectrum of a sinusoidal FM measured
by means of a band-pass filter is given by the convolution
of (2) with the filter transfer function, which is given by
(1), so that we get

S (th)( f ) =
A2

2

∞
∑

k=−∞
J2

k (m)

∣

∣

∣

∣

∣

∣

H

(

f ; fc +
k

m
Df ,RBW

)
∣

∣

∣

∣

∣

∣

2

(3)

The spectra achieved for fc = 1 MHz, Df = 50 KHz,
RBW = 3 KHz and different values of m are shown in Fig-
ures 2(a), 2(b) and 2(c). In all Figures the 0 dBc reference
level is the power level of the first harmonic of the unmod-
ulated clock, i.e. is A2/2.

Figures 2(d), 2(e) and 2(f) show, for the same cases, the
spectrum measured with an HP8563E Spectrum Analyzer.
Similarly, the 0 dBm reference level is the power level of
the first harmonic of unmodulated clock.

By comparing the two sets of Figures, some remarks can
be made.

• In the case when m is low (Figures 2(a) and 2(d),
where m = 3) the match between the spectrum ex-
pected according to (3) and the measured one is al-
most perfect.

• When m assumes intermediate values (as in Fig-
ures 2(b) and 2(e), where m = 25) despite a good
matching between the shape of the expected and the
measured spectrum, the measured one has a much
higher level then the expected one. In this example,
the difference is approximately 5 dB.
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Figure 2: Comparison between the power spectrum expected from Equation (3) and the one measured from an HP8563E
Spectrum Analyzer. (a) Expected spectrum for m = 3; (b) expected spectrum for m = 25; (c) expected spectrum for
m = 200; (d) measured spectrum for m = 3; (e) measured spectrum for m = 25; and (f) measured spectrum for m = 200.
In all cases, it is fc = 1 MHz, Df = 50 KHz, RBW = 3 KHz.

• For very large values of m (Figures 2(c) and 2(f),
where m = 200) the difference between the expected
and the measured spectrum is increasing (about 10 dB
in this case). Furthermore, the shapes of the two spec-
tra do not match anymore, as in the measured one a
saturation effect seems to arise. Note also that the
peak level of the measured spectrum is almost equal
to the unmodultaed signal power.

Even if, for the sake of simplicity, we have considered
the sinosoidal case, comments similar to those above can be
made for any modulating signal, including all those which
are used in practical application (triangular [6, 7], patented
[3] and PAM [8, 9]). These observations have a serious
impact on the design of a spread spectrum clocking system
for EMI reduction.

In fact, to the best of our knowledge, the way which is
almost always adopted to design a spread spectrum system
is to optimize its performance according to the theoretical
PDS, i.e. according to the spectrum one could expect from
Equation (3). In this case, as it is clear from the above ex-
ample, the highest EMI reduction is given when m has in-
termediate or large values, with more then 10 dB reduction
in the peak level in the power spectrum with respect to the
unmodulated case. Like in the case of the example, most of
the actual spread spectrum systems are designed [3, 6, 8]
to operate with reasonably very large values of m, as the
performance of a spread spectrum system is optimized for
m→ ∞.

What we want to show with the above example is that, as

m increases, the differences between the expected and the
measured spectrum also increase. More important, when m
assumes very large values (as in the case of Figure 2(f)), the
EMI reduction with respect to the unmodulated case may
become negligible, i.e. cases exist where a spread spectrum
system would give no advantages in terms of EMI reduc-
tion.

Despite the fact that a formal mathematical explanation
of this effect would be extremely complex, we can give a
simple, intuitive one. It is known that the positive peak de-
tector may overestimate the power of the filtered signal. It
is common to say that it gives results higher than the quasi
peak detector, which gives results higher than the average
detector. Note however that neither the quasi peak nor the
average detector are usually present in a standard spectrum
analyzer. The overestimation of the positive peak detector
depends on the features of the analyzed signal. In the con-
sidered case, it is clear that, the higher is m, the higher the
overestimation.

Let us consider a slow sinusoidal modulation, i.e. the
case where m is very high or, equivalently, fm is very low.
Let us also refer to the block diagram of Figure 1(b). We
can model the system as slowly changing its instantaneous
frequency from fc −Df to fc +Df . When the time required
for sweeping from f0 − RBW /2 to f0 + RBW /2 (i.e. the
time to completely cross the RBW filter bandwidth) is long
enough, the Spectrum Analyzer sees the signal as virtually
“unmodulated” and the amplitude memorized by the peak
detector is almost equal to the amplitude memorized in the
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actual non-modulated case.
From a mathematical point of view, we can consider the

simple case in which f0 = fc. Let us also consider that
the RBW filter is an ideal rectangular band-pass filter. In
the theoretical spectrum, only components with frequency
fc − RBW /2 ≤ f ≤ fc + RBW /2 will contribute to the
power at fc

S (th)( fc) =
A2

2

∑

k

J2
k (m) , |k| ≤ 1

2
m

RBW

Df
(4)

When using the model of Figure 1(b), it is easy to under-
stand that the signal at the input of the peak detector can
be computed as the absolute value of the complex enve-
lope s̃(t) of the signal s(t) being filtered by the base-band
equivalent of the RBW filter, which is a low-pass filter with
bandwidth RBW /2. Note that it is now clear that the con-
dition for neglecting the VBW filter is VBW > RBW /2,
which is usually satisfied.

Since the input signal can be written as

s(t) = Re
(

Ae j2π fct+ jm sin(2π fm t)
)

its complex envelope is [11]

s̃(t) = Ae j sin(2kπ fm t) =

∞
∑

k=−∞
Jk(m) e j2π fmt

Under the assumption of a rectangular low-pass filter with
bandwidth RBW /2, the filtered complex envelope s̃H(t) is
obtained by considering the only few components

s̃H(t) = A
∑

k

Jk(m) e j2kπ fmt , |k| ≤ 1

2
m

RBW

Df

The signal power is estimate by the positive peak de-
tector as 1

2
(maxt |s̃H(t)|)2. Note that independently on the

number of considered components, |s̃H(t)| is periodic with
a maximum for t = k

fm
± 1

4 fm
; the power measured in fc by

the positive peak detector is

S (meas)( fc) =
A2

2

∣

∣

∣

∣

∣

∣

∣

∑

k

jk Jk(m)

∣

∣

∣

∣

∣

∣

∣

2

, |k| ≤
1

2
m

RBW

Df
(5)

By comparing Equation (4) with Equation (5) we can de-
termine when the measured spectrum differs from the theo-
retical PDS. Despite the fact that the two above expression
are very difficult to handle with, it is possible to see that one
always have S (th)( fc) ≤ S (meas)( fc). Furthermore, the only
condition for which we can ensure a matching between the
two spectra is 1

2
m RBW

Df
< 1. In this case, both the sums of

Equation (4) and Equation (5) result in

S (th) ( fc) = S (meas)( fc) =
A2J2

0
(m)

2

In conclusion, based on what computed for the power spec-
trum at frequency fc, we can say that in a fast modu-

lation, more precisely when m < 2
Df

RBW
(which means

fm > RBW /2) we can be sure that the measured spec-
trum matches the theoretical PDS. On the contrary, when

m > 2
Df

RBW
we can expect a power level of the measured

spectrum higher than the one computed through the theo-
retical PDS.

4. Conclusion

In this paper we have compared the theoretical PDS
of a sinusoidal Frequency Modulation with the spectrum
achieved by a measurement with a Spectrum Analyzer. By
means of a very simple modeling of this instrument, we
have concluded that the two spectra match only when the

modulation index m < 2
Df

RBW
. Otherwise, the measured

power level is higher than the expected one from the the-
oretical PDS. This has important consequences in spread
spectrum systems based on the frequency modulation of
the clock, since the EMI reduction measured according to
EMC regulations may be much smaller than the expected
one when m is too large.
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