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Abstract—Recent developments on measurement tech-
nologies make it possible to obtain multi spike sequences
simultaneously. In this paper, to analyze the anatomical
structure of the neural network, we reconstruct the neural
network structures only from multi spike sequences. We
used a spike time metric coefficient and a partial spike time
metric coefficient which are based on a spike time metric
and a partialization analysis. Using these measures, our
method could reconstruct a scale-free structure in the neu-
ral network. We also show that scale-free degree distribu-
tions can be estimated.

1. Introduction

In neural systems, many complicated behaviors are ob-
served. In order to analyze, model, or predict the compli-
cated behavior, it is an important issue to understand the
neural network structure as well as their dynamics. How-
ever, it is not so easy to analyze the anatomical structure
of the neural network. On the other hand, recent develop-
ments of measurement technologies make it possible to ac-
cess simultaneously observed multi spike sequences. The
number of observed sequences is from 30 to 180 [1, 2, 3].
It is widely considered that these multi spike sequences
may reflect essential information about the neural network
structure. From this point of view, we have aheady pro-
posed an estimation method of a neural network struc-
ture only from observed multi spike sequences [4, 7]. In
this method, two measures, a spike time metric coeffi-
cient (STMC) and a partial spike time metric coefficient
(PSTMC) are proposed. The STMC is based on a spike
time metric [5] which quantifies a distance or the degree of
dissimilarity between two spike sequences and the PSTMC
is based on partialization analysis for the STMC [6].

Our method can well estimate the neural network struc-
ture corresponding to the small-world network. Although
the small-world network is often observed in real world in-
cluding the neural systems, the scale-free network is also
an important target. Then, in this paper, we applied our
method to the neural networks which have the scale-free
structure, and evaluated to what extent the proposed mea-
sures (STMC and PSTMC) are applicable to such compli-
cated situation.

2. Spike Time Metric

The spike time metric [5] is one of the statistics to quan-
tify a distance or the degree of dissimilarity between two
spike sequences. The statistic consists of two types of
costs. The first one is a cost of deleting or inserting a spike
which takes unity when a spike is deleted or inserted. The
second one is a cost to move a spike and is defined as gAt
where At is the temporal duration and q is a parameter. The
parameter g decides which factors, the deletion and inser-
tion or the movement, are weighted. Although the value of
this parameter affects the estimation performance for mea-
suring the distance between two spike sequences, we can
decide it appropriately [7]. If the spike is moved for a
longer duration, this cost becomes large. If the distance
takes a small value, it means that a spike sequence is sim-
ilar to another spike sequence. A metric distance between
two spike sequences Z and Z’ is defined as follows:

N-1

Dq(Z.Z') = min > cq(Vi, Vi), @)
k=1

where Vq,V,,---,Vy are elementary steps from Z to Z’.
The metric distance between the two spike sequences is
the minimum total cost of a set of the elementary steps to
transform Z into Z’. In Fig.1, we show an example. From
V1 (= Z) to Vy, we select one spike (the third one) and
delete it. From V, to Vs (= Z’), we move three spikes to
reach Z’. Consequently, the cost between Z into Z’ takes
1+ Q(Atl + At + A'[3).

3. Spike time metric coefficient and its partialization
analysis

To estimate neural network structures from multi spike
sequences, STMC and PSTMC have been proposed by
Ashizawa et al. [4].

The STMC is defined as

Sq(Xi, Xj) = 1- ————————=
065 max Dy(X, X;)
A

O]

where Dq(Xi, Xj) is STM calculated by Eq. (1). The value
of the STMC takes between 0 and 1. If two neurons are
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Figure 1: An example of a sequence of elementary steps to
transform Z into Z'.

coupled, S4(Xi, X;j) is expected to become larger than the
case that the two neurons are uncoupled. Then, the STMC
is a similar measure to the correlation coefficient. However,
the STMC could be spuriously biased even if two neurons
are not directly connected but they are driven by the com-
mon inputs of other neurons.

To remove such spurious connection, partialization anal-
ysis is applied to the STMC. Then, the PSTMC is now de-
fined as follows:

p@. j)

PalX %) ' (. )P(J ) ©
where p(i, j) is the (i, j)th element in an inverse matrix of
Sq(Xi, Xj). The PSTMC can measure the degree of asso-
ciation between the two spike sequences, with removing
spurious correlations. Using these two measures, we can
find hidden relations between the neurons and estimate the
network structure [4, 7].

4. Simulations

4.1. Neural network model

To evaluate validity of our method, we use a mathemat-
ical model of Izhikevich’s simple neuron model [8]. The
model is described by the following equations:

% = 0.04v7 +5v; + 140 — u; + I; (4)
du;

d_tl = aj(bvi — u), ®)
_— Vi < Cj
if vi > 30[mV], then{ U e Ui + d (6)

where v; is the membrane potential of the ith neuron, u; is
a membrane recovery variable, a;, bj, ¢; and d; are dimen-
sionless parameters. The variable I; is the sum of external
and synaptic inputs from coupled neurons.

The neural network is composed of only excitatory neu-
rons. We set a; = 0.02, bj = 0.2, ¢c; = -65+ 15 x U,
di = 8 — 6 x U, and the amplitude of the external inputs
is 5 x G, where U is uniform random numbers and G is
Gaussian random numbers.

4.2. Network structures

In Ref.[7], the Watts and Strogatz (WS) model is used
as a small-world network [9]. In this paper, we used the
Barabasi and Albert (BA) model as a scale-free network
[10]. In this paper, the parameters mq (the number of nodes
in an initial network) and m (the number of edges that is
attached to the network) in the BA model are set to 4 and
2, respectively.

4.3. Numerical simulation

We conducted numerical experiments according to the
following procedures.

1. To generate multi spike sequences, we constructed a
neural network whose element is I1zhikevich’s simple
neuron model. The network structure is decided by
the BA model. The coupling strength is constant and
is fixed to 8.

2. We simulated the neural network with external inputs
and obtained multi spike sequences.

3. We decided an appropriate parameter g in the spike
time metric [7].

4. We applied the STMC and PSTMC to the observed
multi spike sequences. If two neurons are coupled, S
and P4 might be large while they might be small if two
neurons are uncoupled.

5. We calculated a threshold that classifies the coupled
and the uncoupled pairs. The threshold was decided
by the Otsu thresholding [11] which is based on a lin-
ear discriminant analysis.

6. We constructed an estimated network structure
whether the values of S and Pq take over the thresh-
old or not.

7. To evaluate estimation accuracy, we compared the
structure of the estimated network with that of the
original network.

4.4. Estimation accuracy

To evaluate the estimation accuracy, we compared the
structure of estimated network with that of the original net-
work. To quantify the estimation accuracy in the network,
we use the following two characteristics defined as:

~ i j(ijaij)
c-C _— 7
i j ij )
o i = aip@ - @)
u-0 S-an) (®)

where aij (@ij) is the (i, j)th element of the adjacency ma-
trix of the original (estimated) network structure. If the ith
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and jth neurons are coupled, «ij and @;j take unity. If they
are not coupled, a;j and G; take zero. If C—C and U-U are
close to unity, the network structure is estimated with high
accuracy.

To evaluate the estimation accuracy for each neuron, we
defined the following quantifies:

. Zj(@ijdij)
ci-G = LT 9
2| @ij ®)
A Zi(@ =@ - @)
U-U; = Sd-ay (10)

4.5. Strength distribution

To evaluate the performance of the PSTMC, we also in-
vestigated a strength distribution. If two neurons are con-
nected, the value of the PSTMC is close to one. If two neu-
rons are not connected, the value of the PSTMC is close to
zero. Thus, we considered the PSTMC as the weight and
defined the strength as

si= ) (Pa(i. )" (11)
]

where x is a parameter and is set to 6. The reason why we
introduced the xth power in Eq. 11, is that although the
value of PSTMC between a coupled pair of two neurons is
larger than that of uncoupled pairs, the absolute difference
is relatively small. Then, the values of PSTMC of uncou-
pled pairs affect to the strength. Using Eq. 11, the influence
on the PSTMC of the uncoupled pairs could be avoided.

5. Results and discussions

In Fig. 2, we show an example raster plot from the neural
network. The results of estimating network structures for
various network sizes are shown in Fig. 3. The PSTMC
shows high estimation accuracy of U-U (Fig. 3(b)) for all
the network sizes. However, even if the PSTMC is used,
the estimation accuracy C—C becomes gradually worse as
the network size increases.

Figure 4 shows histograms of Sy and Pq. The results
for the small-world network structure are depicted in Figs.
4(a) and (b). On the other hand, Figs. 4(c) and (d) are re-
sults for the scale-free network structure. Blue lines show
a threshold which divides two classes of coupled and un-
coupled pairs of neurons. If Sq or Pq are less than the
threshold, we regard these pairs as uncoupled ones. On
the other hand, if Sq or Py are longer than the threshold,
we regard these pairs as coupled ones. In Fig. 4(b), we can
see coupled and uncoupled pairs are clearly distinguished
by the PSTMC in the case of the small-world network. In
the case of the scale-free network, coupled and uncoupled
pairs of the histogram of Py (Fig. 4(d)) are more clearly
distinguished than that of S (Fig. 4(c)). However, even in
this case, the estimation accuracy for the scale-free network
becomes lower than that for the small-world network.

We also investigated how long the temporal epoch are
needed to estimate the network structure (Figs. 5(a) and
(b)). The estimation accuracy of U-U is high when
the temporal epoch of the spike sequences is longer than
30,000 [ms]. In contrast, the estimation accuracy of C—C
is not improved (the value is less than 0.8). To keep the high
estimation accuracy for U-U , our method needs spike se-
guences for 30,000 [ms] at least.

To investigate why the estimation accuracy for the scale-
free network is lower than that for the small-world network,
we examined the relation between estimation accuracy of
the ith neuron and the average degree of its adjacent neu-
rons (Fig. 6). Color bars indicate the average degree of
adjacent neurons. The estimation accuracy tends to be low
if the ith neuron has a high degree (Fig. 6(a)). Even though
the ith neuron has a low degree, its estimation accuracy
decreases if the average degree of its adjacent neurons is
high. The reason of decreasing the estimation accuracy is
the difference of the firing rates between these neurons. If
the difference of the firing rate is large, the value of the
STM becomes large. This intrinsic property of the STM
leads to the results that even if two neurons are connected,
spike sequences from these two neurons have dissimilarity
due to difference of firing rates.

Figure 7 shows the strength distribution. the strength
distribution obeys a power-low P(s) o« s~3. It indicates that
the feature of the original networks is duplicated by the
PSTMC.
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Figure 2: An example raster plot from the neural network.
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Figure 3: Estimation accuracy of the network structure in
case of changing network sizes N: (a) C—C and (b) U-U.
Red and green lines represent S 4 and Py, respectively.
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Figure 4: Histograms of (a) Sq and (b) Pq for the small
world network, and (c) Sq and (d) Pq for the scale-free net-
work. The number of neurons is 100. Histograms of all of
Sq and Py are shown by red bars, and those of the coupled
elements are overwritten by green bars. Blue lines show a
threshold.
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Figure 5: Estimation accuracy of the network structure for
several temporal epoch of measuring spike sequences: (a)
C-C and (b) U-U. The number of neurons is 100. Red
and green lines represent S and Py, respectively.
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Figure 6: Estimation accuracy of connectivity of the ith
neuron: (a) Ci—C; and (b) Ui—U;. Color bars indicate the
average degree of adjacent neurons. The number of neu-
rons is 300.
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Figure 7: Estimated strength distribution from the PSTMC.
Blue dotted line corresponds to a power-law distribution

p(s) o 7.

6. Conclusions

In this paper, we reconstructed a network structure only
from multi spike sequences. Comparing with the estima-
tion accuracy of the small-world network, the estimation
accuracy of the scale-free network decreases. Even if two
neurons are actually connected, our method regards these
neurons as uncoupled pairs due to the difference of the fir-
ing rate between them. As a future work, we apply the
partialization analysis to a different measure, for example,
mutual information [6], coincidence measure [12] and so
on.
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