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Abstract – This paper presents the new idea of the 
pseudo-inverse maps applied to the optimal pre-corrections 
of nonlinear systems. This concept is a result of search for 
optimal models and optimal past-correctors of nonlinear 
systems from perspective of the Functional Theory of 
Nonlinear Systems which is discussed in this article. Con-
sidered systems are multidimensional, all of input and out-
put signals are real or complex valued and their sets are fi-
nally equipped with the structure of the Hilbert spaces. All 
maps used in this paper are functions for the static systems, 
convolutions for the linear time-invariant systems, and 
nonlinear operators for the nonlinear systems. It is shown, 
that the nonlinear system past- and pre-corrections can be 
reduced to the modeling tasks of some systems which can 
be reduced further to the generalized least mean square 
(LMS) approximations. 

1. Introduction 

The beginning of the Theory of Nonlinear Systems 
dates back to 1887 when Vito Volterra announced Theory 
of his Series which was developed in the course of subse-
quent research. The Volterra Series, although inconvenient 
from the numerical point of view, play the role in the 
Theory of Nonlinear Systems as significant as Convolu-
tions in Modeling of Time-Invariant Linear Systems. 
Another giant step in the Theory of Nonlinear Systems 
took place around 1920, when Norbert Wiener, the creator 
of Cybernetics, conducted research on Orthogonal Opera-
tors with random inputs, nowadays known as Wiener Op-
erators. These operators are magnificent from the numeri-
cal point of view due to their orthogonality. Later, since 
about 1962, the significant progress in the Theory of Non-
linear Systems has been made by Martin Schetzen, the 
brilliant follower of Wiener (M. Schetzen [9]). In 1970s 
an equally great contribution to the Theory of Nonlinear 
Systems was made by Russians K. A. Pupkov, 
W. I. Kapalin and A. S. Jushtchenko (K. A. Pupkov et al. 
[8]). Afterwards outstanding papers by Irvin W. Sandberg, 
Rudi J. P. de Figueiredo et al. appeared. One of the au-
thors of this article has dealt with past-correction of static 
systems since 1977, initially in a purely electronic way 
and then numerically with the use of the Splines. His fur-
ther work led him eventually to the Theory of Nonlinear 
Systems in which he applied methods resulting from ad-
vanced Functional Analysis, Nonlinear Analysis, Theory 

of Lebesgue Measure and Integral, Algebra and Topology, 
although he is not a mathematician by education. In 1994 
this work led him to the Functional Theory of Nonlinear 
Systems (G. Ciesielski [4]), which is a generalization of 
the classical approach used in the Theory of Nonlinear 
Systems. This uniform generalized Theory shows among 
other things that there is no need to treat Volterra and 
Wiener Theories of Nonlinear Systems as two separate 
theories as wrote Martin Schetzen in his book. The second 
author of this article has recently begun her scientific ex-
perience, starting with a successful application of neural 
networks to modeling of highly complex real systems, 
such as steam turbines (P. Sobanska, P. Szczepaniak [10]). 

2. Optimal Modeling 

Let us assume further in the whole of article that � is 
the real or complex number field, �� is the normed space 
over the number field � of some maps with the norm �∙�� 
and ���� ≔ 
�� ∈ ���

� is a system of some maps from ��. 
For the given modeled system described by the map 
� ∈ ��  we search for its model �� ∈ span ���� ⊂ ��  as 
the linear combination of elements of the system ���� not 
necessarily linearly independent, so �� = ����

� ���� ≔
∑ ����

�
���  . Let on ��  the functional ���� � !" #�$�


�
∶= min(∈� !" #�$�

�� − *�� . The coefficients ����  of the 

optimal model ��  should satisfy the equation: �� −
���� = ���� � !" #�$�


� . As we can see now, this mod-

eling task leads us to the problem of approximation of the 
system �  by the linear combination of elements of the 
system ����  what can be very easily computed. 

3. Optimal Past-Correction 

Let us assume further in the whole of article that +� 
and ,�  are the normed spaces of some maps with the 
norms �∙�+ and �∙�, adequately. These spaces satisfy the 
condition: ∀. ∈ ��  ∀/ ∈ +� 
/ ∘ . ∈ ,� . Let 1��� ≔

1� ∈ +��

�  is a system of some maps from +� . For the 
given corrected system � ∈ ��  and required system 
2 ∈ ,� we search for the past-corrector *� ∈ span 1��� ⊂
+�  as the linear combination of elements of the system 
1���  not necessarily linearly independent, so *� =
����

� 1��� ≔ ∑ ��1�
�
���  . Similarly as previously, let the func-
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tional �3456 � !" 7�$�

�, 2 ∶= min(∈� !" 7�$�

�2 − * ∘ ��,  
on �� × ,� . The coefficients ����  of the optimal past-
corrector *�  satisfy the equation: �2 − *� ∘ ��, =
�3456 � !" 7�$�


�, 2 . 
This is the unconstructive form of determination of the 

past-correction of the system � by the linear combination 
of the maps 1��� for the given required system 2. The un-
constructiveness of this form arises from the fact that 
there is no well known mathematical method of solving 
this problem. But after a bit of consideration, we can no-
tice that this approach can be rearranged to the construc-
tive form of determination of the past-correction of the 
system � . This equivalent constructive form consists in 
the modeling of the required system 2 ∈ ,� by the linear 
combination of the maps :��� ≔ 
:� ∈ ,��

� ≔

1� ∘ � ∈ ,��

�  . Therefore, for the given required system 
2  we search for its model 2� ∈ span :���  as the linear 
combination of elements of system :���, perhaps linearly 
dependent, so 2� = ����

� :��� ≔ ∑ ��:�
�
���  . The coeffi-

cients ���� of the optimal past-corrector *� are the same as 
for the optimal model 2� of the required system 2 and sa-
tisfy equation: �2 − 2��, = ���� � !" ;�$�


2 . Obtained 

proceeding can be easily computed. 

4. Pseudo-Inverse System 

Let us assume that the identity map id ∈ ,� or some 
its approximation ıd> ∈ ,� which is chosen by us. We can 
notice from the optimal past-correction task that if 2 = id 
in the exact case we get *� = �?�, if inverse map �?� ex-
ists, because as we well know �?� ∘ � = id . From ma-
thematical analysis we know that the inverse map �?� ex-
ists if and only if the map � is a bijection. This theorem 
limits us to such a simple approach to find inverse system 
�?� in the exact case. But, if we make approach similar to 
the optimal past-correction task previously discussed we 
can obtain the pseudo-inverse system �@. So, let us define 
on ��  the functional ��AB +�
� ≔ �3456 +�
�, id . The 
system denoted by �@  which satisfies the equation: 
�id − �@ ∘ ��, = ��AB +�
�  we will call the pseudo-
inverse system for the system � in +�. We will denote the 
compound map �@ ∘ � as ıd>  . 

In approximate approach, for the given system � ∈ �� 
we search for the pseudo-inverse system ��

@ ∈ span 1��� 
as the linear combination of elements of system 1��� not 
necessarily linearly independent, so ��

@ = ����
� 1��� ≔

∑ ��1�
�
���  . The coefficients ����  of the optimal pseudo-

inverse system ��
@  satisfy equation: �id − ��

@ ∘ ��, =
��AB � !" 7�$�


� . Let us denote the compound map 

��
@ ∘ �  as id� = ����

� :��� ≔ ∑ ��:�
�
���  . Similarly as pre-

viously, the coefficients ���� of the optimal pseudo-inverse 
system ��

@ are the same as for the optimal model id�  of 
the identity map id  and should satisfy equation: �id −

id��, = ���� � !" ;�$�

id . Obtained proceeding can be 

easily computed. 
This result is especially interesting e.g. from the elec-

trical circuit diagnostics or metrology perspective. 

5. Optimal Pre-Correction 

For the given corrected system � ∈ +�  and required 
system 2 ∈ ,�  we search for the pre-corrector *� ∈
span ���� ⊂ �� as the linear combination of elements of 
system ���� ≔ 
���

� not necessarily linearly independent, 
so *� = ����

� ���� ≔ ∑ ����
�
���  . Let the functional 

�3CD � !" #�$�

�, 2 ∶= min(∈� !" #�$�

�2 − � ∘ *�,  on 

+� × ,� . The coefficients ����  of the optimal pre-
corrector *�satisfy the equation: 
 �2 − � ∘ *��, = �3CD � !" #�$�


�, 2 . (*) 

We obtain the unconstructive form of determination of 
the pre-correction of the system � by the linear combina-
tion of elements of system ���� for the given required sys-
tem 2. The unconstructiveness of this form arises from the 
fact that there is no well known mathematical method of 
solving this difficult problem. After due consideration, we 
can notice that this approach can be rearranged to the con-
structive form of determination of the pre-correction of the 
system �. From the left side of the equation (*) we have 
��@ ∘ 2 − �@ ∘ � ∘ *��� ≅ ��@ ∘ 2 − *��� . The system 
�@ ∘ � =: ıd>  is some approximation of the identity map id. 
If this approximation is good then we can assume that 
ıd> ≅ id . So, the coefficients ����  of the optimal pre-
corrector *�are approximately the same as for the optimal 
model *� of the system �@ ∘ 2 which satisfy the equation: 
��@ ∘ 2 − *��� = ���� � !" #�$�


�@ ∘ 2 . Obtained pro-

ceeding can be relatively easily computed. 
This result is especially interesting from e.g. the nonli-

near control perspective. 

6. Generalized Theorem on the LMS Approximation 

One of the main problems which came out here is the 
linear dependence of the sets ����, 1��� or especially :��� 
what can arise in general case. Let us denote for any set 

����  by GH����I ≔ HJ�� , �KLI
�,K��

    �
 the Gramian matrix and 

for any matrix M by M@ let us denote the pseudo-inverse 

matrix of Moore-Penrose (F. R. Gantmacher [5], p. 33 

and J. Stoer, R. Bulirsch [11], p. 220). Now, the remedy 
for this problem is the following theorem. 

GENERALIZED THEOREM ON THE LMS APPROXIMATION. 
If �� is the unitary space with the norm �⋅� determined by 

the inner product J∙,∙L  as �∙� ≔ OJ∙,∙L , ���� ≔ 
���
�  is 

some set of elements from �� , such that dim span ���� ≤
Q , and ���� ≔ G@H����IJ����, .L ≔ G@H����I
�� , .�

� , then 
there exists exactly one LMS approximation /� ≔ ����

∗ ���� 
of element . ∈ ��  in the linear space span ����  and the 

LMS error is �. − /�� = O�.�S − �/��S. 
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Proof. The existence of the exactly one element 
sults from the fact that for each matrix exactly one pse
do-inverse matrix exists (F. R. Gantmacher [
dim span ���� � 0 then of course /� �
sider the case when dim span ���� U 0 .
features of the LMS approximation, it will be enough to 
show that 
. ) /� V span ���� , which
J. ) /� , ����L � 0 � ��. To do this, let us notice that

J. ) /� , ����L � J. ) ����
R ����

� J. ) HG@H����IJ����, .LIR���
� J., ����L ) JHG@H����IJ����, .LI
� J., ����L ) JHG@H����IJ����, .LI
� J., ����L ) H�K , ��I�,K��

    � G@H����
WWWWWWWWW

� J., ����L ) G�H����IG@H����IWWWWWWWWWWW
� J., ����L ) GH����IWWWWWWWWW G@H����IJWWWWWWWWWWW
� J., ����L ) GH����IG@H����IWWWWWWWWWWWWWWWWWWWW

As we know, the Gramian matrix GH�
and only if the system ����  is linearly independent
(V. A. Ilyin, E. G. Poznyak [6], p. 216), but 
assumptions do not make this certain
X 	 dim span ���� P Q . Then, we can choose such el
ments of the set ���� which form the base 
the linear space span  ���� . Let M � Y�
that ���� � M:�Z� . Let us denote [ 	 

then from fundamental features of the pseudo
trices (J. Stoer, R. Bulirsch [11], p. 220) 

GH����I[ � MGH:�Z�IMR
MR@G?

� MGH:�Z�IM@MG?�H:�Z�
Because the rank of the matrix M  denoted by 
then let \ � Y��9Z and ] � Y�Z9Z be decomposition m
trices of the matrix M such that rank rk
and M � \]. It can be proved (F. R. Gantmacher [
33) that M@ � ]R
]]R?�
\R\?�\R  and from here, a
suming \ � M and ] � �̀Z,Z� , we get 

M@M � �̀Z,Z�
R H �̀Z,Z� �̀Z,Z�

R I?�
MRM
 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The step responses of the first order inertial system (a) and oscillatory system (b) before 
al past- and pre-correction with the use of 8 Laguerre Functions 

 

. The existence of the exactly one element /� re-
fact that for each matrix exactly one pseu-

Gantmacher [5], p. 32). If 
0 . So, let us con-

. From well known 
features of the LMS approximation, it will be enough to 

which means that 
et us notice that 

� �, ����L � 

I ���, ����L � 

LIR����, ����L � 

LIR����, ��L�
� � 

H � �IJ����, .LWWWWWWWWWWWW � 

H �IJ����, .LWWWWWWWWWW � 

H �IJ����, .LWWWWWWWWWW � 

H � �IWJ., ����L . 
H����I is invertible if 

is linearly independent 
], p. 216), but the theorem 

make this certain, so we have 
. Then, we can choose such ele-

the base :�Z� 	 
:��
Z  of 

��9Z be such matrix 

MR@G?�H:�Z�IM@, 

the pseudo-inverse ma-
], p. 220) we get 

�H:�Z�IM@ � 
H � �IM@. 

denoted by rk M � X , 
be decomposition ma-

rk M � rk \ � rk ] 
Gantmacher [5], p. 
and from here, as-


 ?�MRM � 

� 
MRM?�MRM
which means that the product 

GH����I[ � MGH:�Z�I �̀Z,Z�G
Presented relations and the pseudo
tures (J. Stoer, R. Bulirsch [11], p. 220) 
ing conditions be fulfilled: 
 GH����I[GH����I � MM
 � MGH:�Z�IMR �
 [GH����I[ � 
MR@G?�

 � 
MR@G?�H:�Z�
 [GH����I � 
MR@G?�H:�Z

 � 
MM@R � MM@ � b
 GH����I[ � MM@ � 
MM@

It lets us conclude (J. Stoer, R. 
[ � G@H����I . Next, from the inner product features
get GH����I � GHM:�Z�I � MG
J����, .LWWWWWWWWWW � MJ:�Z�, .LWWWWWWWWWWWW � McJ., :�Z
dered inner product 

J. ) /� , ����L � J., ����L )  GHWW
� J., ����L )  MM@WWWWWWJ., ����L � J.

� J., ����L ) MM@MWWWWWWWWJ., :�Z�L �
� J., ����L ) J., ��

Finally, in the LMS error formula we 
ralized Pythagoras Theorem what ends the proof

This is a very strong and novel
approximation. 

7. Obtained Results 

Some results obtained by presented theory for 
time-invariant systems (R. Wojciechowski [
shown in fig. 1, for the static system
shown in fig. 2 and for the nonli
tem (G. Ciesielski [4]) are shown 

(b) 

Fig. 1. The step responses of the first order inertial system (a) and oscillatory system (b) before 
with the use of 8 Laguerre Functions (R. Wojciechowski [12]). 

M � �̀Z,Z� , 

I �G?�H:�Z�IM@ � MM@. 
resented relations and the pseudo-inverse matrices fea-

], p. 220) make the follow-

M@MGH:�Z�IMR � 
I � GH����I , (1) 

�H:�Z�IM@MM@ � 
H � �IM@ � [, (2) 
H �Z�IM@MGH:�Z�IMR � 

b[GH����Id
R
 and (3) 


 @R � b[GH����Id
R
. (4) 

 Bulirsch [11], p. 221) that 
. Next, from the inner product features, we 

MGH:�Z�IMR  and J., ����L �
�Z�L .  Therefore, the consi-

H����IG@H����IWWWWWWWWWWWWWWWWWWWJ., ����L � 
J., ����L ) MM@WWWWWW McJ., :�Z�L � 

�L � J., ����L )  McJ., :�Z�L � 

���L � 0 � �� . 
, in the LMS error formula we can notice the Gene-

what ends the proof. ■ 

novel theorem on the LMS 

Some results obtained by presented theory for the linear 
Wojciechowski [12]) are 

static system (A. Albrecht [1]) are 
the nonlinear time-invariant sys-

are shown in fig. 3. 

Fig. 1. The step responses of the first order inertial system (a) and oscillatory system (b) before ■ and after ■ the optim-
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 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The error functions of the pressure measurements 
classic past-correction (a) and after the optimal past
the breakpoints p_appr = [100:500/20:600]

 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The step responses of the Danaide (orifice gauging tank)
model ● (a) and its step responses after optimal past
Operators (G. Ciesielski [4]). 
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