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Abstract—In this paper we investigate an artificial spik-
ing neuron model inspired by the mammalian spiral gan-
glion cell. It is shown, by numerical analysis and SPICE
simulations, that a set of paralleled N neurons can en-
code an analog input signal in such a way that (1) a spike
histogram of summation of the N spike-trains can mimic
waveform of the analog input, (2) the spike-trains do not
synchronize to each other and thus the summed spike-train
can have higher sampling rate, and (3) firing rates of the
neurons can be adjusted by internal parameters.

1. Introduction

Fig.1 shows a sketch of the mammalian inner ear [1].
The spiral ganglion cell encodes a periodic sinusoidal input
P(t) (which is a receptor potential of the inner hair cell) into
a spike-train Yi(t). Physiological experiments show that a
set of paralleled N spiral ganglion cells encodes the peri-
odic input P(t) into the summed spike-train Y(t) =

∑
i Yi(t)

in such a way that a spike histogram of the summed spike-
train Y(t) mimics the waveform of the input P(t), where
N � 20 in the case of humans. In this paper such an encod-
ing function of paralleled spiking neurons is referred to as
a paralleled spike encoding function.

Inspired by this encoding function, in this paper we
investigate an artificial chaotic spiking neuron (CSN) as
sketched in Fig.2(a). The CSNs accept the input s(τ)
which can have various waveforms such as constant, pe-
riodic, non-periodic and random waveforms. It is shown,
by numerical analysis and SPICE simulations, that a set
of N CSNs can realize a paralleled spike encoding func-
tion which utilizes the following properties: (P1) a spike
histogram of the summed spike-train y(τ) =

∑N
i=1 yi(τ)

mimics waveform of the input s(τ); (P2) the spike-trains
{y1(τ), · · · , yN(τ)} do not synchronize to each other and thus
the summed spike-train y(τ) can have N times higher en-
coding resolution than each single spike-train yi(τ); and
(P3) firing rates of the CSNs are adjustable and thus op-
eration speeds of chip-implemented CSNs are adjustable.

Significances of this paper are including the follow-
ing points: (i) Synthesis of an artificial spiking neuron
model and analysis of its encoding function are impor-
tant fundamental researches to develop pulse-coupled neu-
ral networks and their applications [2]-[8]. (ii) The paral-
leled spike encoding function can be applied to paralleled
analog-to-digital converters, where s(τ) is an analog in-
put and {y1(τ), · · · , yN(τ)} ∈ {0, 1}N are paralleled digital
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Figure 1: Basic mechanisms of the mammalian inner ear [1]. A
spike histogram of the summed spike-train Y(t) =

∑
i Yi(t) of the

spiral ganglion cells mimics waveform of a periodic sinusoidal
receptor potential P(t) of the inner hair cell.

outputs. It has been pointed out that such spike-timing-
based analog-to-digital converters are promising in a fu-
ture VLSI technology because it will become more diffi-
cult to obtain an analog circuit having high precision of
state variables (e.g., capacitor voltage) as the integration
size decreases [5][9]. (iii) Since the CSN is a generalized
system of the artificial spiral ganglion cell model in [7],
it may contribute to develop a future biologically plausi-
ble cochlea implant [1][10]. Such a biologically plausible
cochlea implant should include a huge number of artificial
spiral ganglion cells like the mammalian inner ear. The
presented CSN is suitable for this purpose since it can be
implemented by a simple circuit.

2. Paralleled chaotic spiking neurons

In this section we investigate a mathematical model of
the paralleled chaotic spiking neurons (CSNs) whose block
diagram is shown in Fig.2(a). As show in this figure each
CSN consists of two units: the base unit which is com-
monly used by all the CSNs and the neuron unit which is in-
dividually used by each CSN. The input s(τ) is commonly
applied to the base unit and the neuron units. Fig.2(b)
shows an example of the input s(τ), where τ ≥ 0 is a di-
mensionless time. In this paper we assume that the input
s(τ) can have various waveforms (e.g., constant, periodic,
non-periodic, and random) under the following condition
for all τ ≥ 0.∫

s(τ) dτ is continuous, and there exists
a constant smax < ∞ such that |s(τ)| ≤ smax.

(1)

This condition says that the input s(τ) should be bounded
and should not include the Dirac’s delta function. Most
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Figure 2: Chaotic spiking neuron (CSN) and its basic dynamics.
(a) The CSN consists of the base unit and the neuron unit. (b) As
an example of the input s(τ), a non-periodic input s(τ) is shown.
(c) Integrate-and-fire-type dynamics of the state b of the base unit.
(d) Integrate-and-fire-type dynamics of the state xi of the neuron
unit. At the firing moment, the state xi is reset to the base signal
−b. (e) Output spike-train yi(τ).

of realistic inputs s(τ) satisfy this condition. As shown in
Fig.2(a) the base unit has an internal state b. Fig.2(c) shows
basic dynamics of the state b that is described by the fol-
lowing integrate-and-fire-type equation.

⎧⎪⎨⎪⎩ ḃ = s(τ) + s0 for b(τ) < β,
b(τ+) = 0 if b(τ) = β

(2)

where ḃ represents db/dτ, τ+ represents limε→0 τ+ε, ε > 0,
and the initial state b(0) is assumed to satisfy b(0) ≤ β. We
refer to the parameters s0 and β as a stimulation offset and
a firing threshold, respectively. The parameters (s0, β) are
assumed to satisfy the following condition.

s(τ) + s0 > 0, β > 0. (3)

As shown in Fig.2(c) the state b increases by integrating
the positive signal s(τ) + s0. If the state b reaches the firing
threshold β at τ, the state b is reset to zero at τ+. Repeating
such integrate-and-fire dynamics, the state b oscillates. As
shown in Fig.2(a) the signal −b(τ) is used as an output of
the base unit. Hence we refer to −b(τ) as a base signal.
The base signal −b(τ) is commonly input to the N neuron
units. As shown in Fig.2(a) each i-th neuron unit has an in-
ternal state xi and an output yi. Fig.2(d) and (e) show basic
dynamics of the state xi and the output yi that are described
by the following integrate-and-fire-type equation.

{
ẋi = s(τ) + s0 for xi(τ) < α,
xi(τ+) = −b(τ+) if xi(τ) = α,

yi(τ) =
{

0 for xi(τ) < α,
1 if xi(τ) = α,

(4)

where i = 1, 2, · · · ,N. The parameter α is referred to as a
firing threshold and is assumed to satisfy

α > 0. (5)

The neuron units are assumed to have different initial states
xi(0) � x j(0), xi(0) ≤ α, x j(0) ≤ α for all i � j. As shown
in Fig.2(d), the state xi increases by integrating the positive
signal s(τ) + s0. If the state xi reaches the firing threshold
α at τ, the state xi is reset to the base signal −b(τ) at τ+. At
this reset moment, the i-th neuron unit outputs a firing spike
yi(τ) = 1 as shown in Fig.2(e). Repeating such integrate-
and-fire dynamics, the i-th neuron unit outputs a spike-train
yi(τ) as shown in Fig.2(e). As shown in Fig.2(a) the spike-
trains {y1, · · · , yN} are summed:

y(τ) =
N∑

i=1

yi(τ). (6)

We can summarize the system description as the following:
the input s(τ) can have arbitrary waveform under the condi-
tion in Equation (1); the CSNs are described by Equations
(2) and (4); the CSNs are characterized by the parameters
(N, s0, β, α) satisfying the conditions in Equations (3) and
(5); and the spike-trains of the CSNs are summed as de-
scribed in Equation (6).

3. Numerical simulations and Paralleled encoding

In this section we investigate whether the paralleled
CSNs satisfy the properties (P1), (P2) and (P3), and in-
vestigate how the input s(τ) is encoded into the summed
spike-train y(τ). Let us begin with defining a spike his-
togram and a firing rate. The spike histogram ρ̃(τ) of the
summed spike-train y(τ) =

∑N
i=1 yi(τ) is defined by

ρ̃(τ) ≡ # of spikes in y(τ) for mδ ≤ τ < (m + 1)δ
Nδ

(7)

where δ > 0 is the histogram bin size, m = 0, 1, 2, · · · , and
“≡” denotes the “definition” hereafter. The firing rate γi of
a single spike-train yi(τ) is defined by

γi ≡ lim
T→∞

# of spikes in yi(τ) for 0 ≤ τ < T
T

. (8)

Fig.3 shows numerical simulation results (by the trape-
zoidal numerical integration) for some typical inputs s(τ),
where the parameters are fixed to

N = 20, s0 = 1, β = 0.5, α = 0.5β. (9)

We can see in Fig.3 that the input s(τ) is encoded into the
summed spike-train y(τ) as the followings.
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Figure 3: Paralleled spike encoding function of the CSNs. The
parameters (N, β, α, s0) are fixed to (20, 0.5, 0.25, 1). y(τ) =∑20

i=1 yi(τ) is the summation of N = 20 spike-trains. ρ̃(τ) is
the spike histogram of the summed spike-train y(τ) defined in
Equation (7). (a) Periodic sawtooth input s(τ) in Equation (10).
(b) Non-periodic input s(τ) described in Equation (13). In both
(a) and (b), the firing rates are (γi, γ j) � (2, 2), the spike his-
togram ρ̃(τ) (rectangles) mimics the waveforms of scaled inputs
2(s(τ) + 1) (solid lines and curve), and the spike-trains (yi, yj) do
not synchronize.

3.1. Periodic input

In the case of Fig.3(a), the input s(τ) is give by the fol-
lowing periodic sawtooth signal

s(τ) = 1.6(τ − 0.5) for 0 ≤ τ < 1,
s(τ + 1) = s(τ). (10)

It can be seen in Fig.3(a) that the states {xi, x j} of the
CSNs do synchronize and the corresponding spike-trains
{yi, y j} do not synchronize. We have also confirmed (but
not shown in the figure) that the spike-trains {y1, · · · , yN}
of all the CSNs do not synchronize. Hence the CSNs sat-
isfy the property (P2). In Fig.3(a) the summed spike-train
y(τ) =

∑20
i=1 yi(τ) and its spike histogram ρ̃(τ) are also

shown. We can see the following relation between the input
s(τ) and the spike histogram ρ̃(τ).

ρ̃(τ) � 2(s(τ) + 1). (11)

This equation means that the spike histogram ρ̃(τ) mimics
the waveform of the input s(τ) and thus the CSNs satisfy
the property (P1). In the case of Fig.3(a) the firing rates γi

and γ j of the spike-trains yi and y j are given by

γi � 2, γ j � 2. (12)

We have also confirmed (but not shown in the figure) that
all the firing rates {γ1, · · · , γN } are approximately two.

3.2. Non-periodic input

In the case of Fig.3(b), the input s(τ) is

s(τ) = 0.4 cos(2πτ) + 0.4 cos
(

2π√
10
τ

)
. (13)

This input s(τ) is non-periodic. It can be seen in Fig.3(b)
that the spike-trains {yi, y j} of the CSNs do not synchronize.
We have also confirmed (but not shown in the figure) that
the spike-trains {y1, · · · , yN } of all the CSNs do not syn-
chronize. Hence the CSNs satisfy the property (P2). In
Fig.3(b) we can see the following relation between the in-
put s(τ) and the spike histogram ρ̃(τ).

ρ̃(τ) � 2(s(τ) + 1). (14)

This equation means that the spike histogram ρ̃(τ) mimics
the waveform of the input s(τ) and thus the CSNs satisfy
the property (P1). In the case of Fig.3(b) the firing rates are
given by

γi � 2, γ j � 2. (15)

We have also confirmed (but not shown in the figure) that
all the firing rates {γ1, · · · , γN } are approximately two.

3.3. Paralleled encoding function

From the above numerical simulation results, we can
provide a hypothesis that the input s(τ) is encoded into the
spike histogram ρ̃(τ) as

ρ̃(τ) � (s(τ) + s0)/β
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Figure 4: Transistor model of the paralleled CSNs. (a) Whole circuit
structure for N = 3 CSNs. The input I(t) is given as a current signal. (b)
SPICE simulation result. Horizontal axis is 0.5μsec/div.. Vertical axes are
I : 1mA/div., (−B̃ + ePUT , vi) : 1V/div. and −Ỹi : 2V/div.. The black
triangle indicates I = 0. I0 = 1.8[mA], r0 = 1[Ω], r = 5[Ω], V+ = 10[V],
V− = −10[V], C = 10[nF], Ṽβ = 5[V], Ṽα = −1[V]. As the PUT, a
SPICE model of the discrete circuit element 2N6027 is used. The SPICE
parameters of the pMOS transistors are: L = 10−6, W = 10−5 and the
other parameters are the same as the discrete circuit element M2SJ325.
The SPICE parameters of the nMOS transistors except for the one in the
base unit are: L = 10−6, W = 10−5 and the other parameters are the
same as the discrete circuit element 2SK1580. The SPICE parameters of
the nMOS transistor in the base unit are the same as that of the discrete
circuit element 2SK1850.

and thus the CSNs satisfy the property (P1). We can also
provide a hypothesis that the spike-trains {y1, · · · , yN } do
not synchronize and the CSNs satisfy the property (P2). In
addition we can provide a hypothesis that the firing rate γi

of each spike-train yi is given by

γi = s0/β

and thus the CSNs satisfy the property (P3). These hy-
potheses are theoretically true as proven in [8].

We present a transistor model of the paralleled CSNs
in Fig.4(a). Using appropriate transformations, the circuit
equation is transformed into Equations (2) and (4). Fig.4(b)
shows a SPICE simulation result. It can be seen that more
spikes are generated as the input I(t) has a larger value and
that the spike-trains {−Ỹ1,−Ỹ2,−Ỹ3} do not synchronize.

Hence the transistor model satisfies the properties (P1) and
(P2). We have also confirmed (but not shown by pictures)
that the transistor model satisfies the property (P3).

4. Conclusions

We have analyzed the paralleled spike encoding function
(which utilizes the properties (P1), (P2) and (P3)) of the
chaotic spiking neuron. Also we have presented the elec-
tronic circuit model of the neuron and confirmed the typical
paralleled encoding function by SPICE simulations. Future
problems include the followings: (a) analysis of robustness
of the encoding function against parameter mismatches; (b)
design of the CSN for VLSI implementation; and (c) analy-
sis of the encoding function from AD converter viewpoints,
e.g., limitation of sampling rate, signal-to-noise ratio, noise
shaping, power consumption and implementation size.
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