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Abstract—The [5-sensitivity of a closed-loop transfer
function with respect to coefficients of a state-estimate
feedback controller is analyzed, and the problem of min-
imizing an [,-sensitivity measure subject to /2-scaling con-
straints is formulated. Next, the constraint optimization
problem is converted into an unconstrained optimization
formulation by using linear-algebraic techniques, and an
efficient quasi-Newton method is applied to solve the un-
constrained optimization problem. Finally, a numerical ex-
ample is presented to illustrate the utility of the proposed
technique.

1. Introduction

It is well-known that a linear system has an infinite num-
ber of state-space minimal realizations. For a given transfer
function, it is of practical importance to construct a state-
space realization such that the coefficient sensitivity of the
linear system is minimal or nearly minimal in a certain
sense. Due to finite word length (FWL) effects caused by
either truncation or rounding of the coefficients, the poor
sensitivity may lead to the degradation of the transfer char-
acteristics in a FWL implementation of the system. Several
techniques for constructing state-space realizations with
minimum sensitivity have been reported: /1 /l-mixed sen-
sitivity minimization [1]-[4] and [-sensitivity minimiza-
tion [5]-[8]. It has been argued in [9],[10] that sensitivity
minimization based on a pure /3-norm is more natural and
reasonable relative to /1 /lo-mixed sensitivity minimization.
More recently, the minimization problem of l3-sensitivity
subject to [s-scaling constraints has been explored for state-
space digital filters [9],[10]. However, not enough research
has been done on the minimization of either [; /lo-mixed
sensitivity or [y-sensitivity subject to l2-scaling constraints
for the closed-loop transfer function with a state-estmate
feedback controller [11]. Notice that the introduction of /-
scaling constraints is beneficial for suppressing overflow.

In this paper, the problem of synthesizing the optimal
structure of a state-estimate feedback digital controller with
minimum [s-sensitivity and no overflow is investigated.
First, the [5-sensitivity of a closed-loop transfer function
with respect to coefficients of a state-estimate feedback
controller is analyzed. Second, the problem of minimizing
the lo-sensitivity subject to [3-scaling constraints is formu-

lated. Third, the constrained optimization problem is con-
verted into an unconstrained one by using linear-algebraic
techniques. The unconstrained optimization problem is
then solved by applying a quasi-Newton algorithm. Finally,
a numerical example is presented to illustrate the validity
and effectiveness of the proposed technique.

2. [>-Sensitivity Analysis

Suppose that a linear discrete-time time-invariant system
is represented by

x(k+1)=A,x(k) + bou(k)
y(k) = cox(k)

where x(k) is an n x 1 state vector, u(k) is a scalar input,
y(k) is a scalar output, and A,, b, and ¢, are n x n, n x 1
and 1 x n real matrices, respectively. The above linear sys-
tem is assumed to be stable, controllable and observable.
The transfer function of the linear system in (1) is given by

e))

H,(2) = co(2I, — A,) " 'b,. )
Assuming that a regulator is designed using the full-order
state observer, a state-estimate feedback controller denoted
by (Do, bs,g,, ko)n can be expressed as

Z(k+1)=D,x(k)+ bou(k) + g,y(k)

3

ulk) = —ko@(k) + (k) ©
where Z(k) is an n x 1 state vector in the full-order state
observer, g, is an n x 1 gain vector chosen so that all the
eigenvalues of matrix D, = A, — g,¢, are located within
the unit circle on the complex plane, k, is a 1 x n state-
feedback gain vector chosen so that each of the eigenvalues
of matrix A, — b,k, is at an arbitrary location within the
unit circle, and r (k) is a scalar reference signal.

In the case where the state-estimate feedback controller
in (3) is implemented with infinite precision from the coef-
ficients of the linear system in (1), the FWL implementa-
tion of (3) can be written in the form

&(k +1) = D& (k) + bu(k) + gy(k)

“4)
u(k) = —ki (k) + r(k)
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where (k) denotes the state vector in the FWL implemen-
tation. The closed-loop system consisting of (1) and (4) is

then described by
z(k+1) lAO —b,k ] lw(k)] [bo]
. = N r(k)
z(k+1) gco, D —bk| | z(k) b
(k)
y(k) =[co O] Lﬁ(k)] :

Q)

The transfer function of the linear system in (5) is ex-
pressed as

H.(2)

=¢(2l3, — A)~'b (6)
where

J— AO

A =

_bok _ bo
, b= , €=lc, O].
gc, D —bk b

Definition 1: Let X be an m X n real matrix and let
f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X . The sensitivity function

of f(X) with respect to X is then defined as
_ X)) _of(X)
Sx = X with (Sx);; = sy @)

where x;; denotes the (4, j)th entry of matrix X.

According to Definition 1, the sensitivities of H.(z) with
respect to D, b, k and g are defined and then evaluated with
the exact values of A,, b,, ¢,, k, and g, as

OH.(2) T
2D [F (2)W1(2)G(z)]
OH.(z)
3b = -Wi(2)(1 — Wa(2))G" (2)
0H.(2) OH.(2)
oKL —F (Z)Wl(z)v 99 = _W1( )GT( )
(®)
where
G(2) =ko|zI, — (A, —g,c)] "
F (2) =[zI, — (A, — bok,)] " b,
Wi(2) = ¢o |21, — (As — boko)] " b,
Wa(z) = ko [2I,, — (Ay — boko)] ™" b,

Definition 2 [5]: Let X (z) be an m X n complex matrix-
valued function of the complex variable z and let x,,(2) be
the (p, q)th entry of X (z). The ly-norm of X (z) is then

defined as
, 3
} ) dw]

X)), = [% I (zz|qu<em

p=1g=1

I
N
=
| — |

[N}
-
e
m
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jal
N
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™
*
Py
N
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o] &

By virtue of (8) and Definition 2, it is possible to define
the overall [5-sensitivity measure by

OH.(2) | ‘6Hc<z> ‘61{0(2)

2 2 2

oD b ok” dg

‘ch<z>

2 2 2 2

C)
Note that the sensitivity measure in [4] based on a mixture
of [;- and lo-norms differs from that in (9). By substituting

(8) into (9), we arrive at
mo = tr [M1] +tr [Wg] +tI‘[K1] +tr [Ng] (10)

where M1, Wy, K1, and INg are obtained by a general
expression

1 dz
Y = pr |z|:1X(Z)X (2) -
with X (z) = F (2)W1(2)G(z) for Y = M
X(z) = [ 1(2)(1=Wa(2))G(2)]" for Y = Wy
X(z) F (2)Wi(z) forY = K3
X (2) = [Wi(2)G(2)]" for Y = No.

Taking the z-transform of the state equation in (5) yields
X(2) o
. = (213, — A)7'bR(2). (11)
X (z)

Replacing D, b, g, and k by the exact values of D,, b,,

g,, and k,, respectively, one can write (11) as

. = R(z (12)
l (2) ] l ri |7
where
F(2)=8S(zI5, — S "A,S)"'S™'b,
J— Ao *boko ‘| bo ]
A, = o = .
g.,co D,—bk, b,

Then it is easy to show that the controllability Gramian

1 dz
= 3 M:lF( )F(2)— (13)
can be obtained by solving the Lyapunov equation
K. = (A, —boko) Ko(Ay — boko)” +bob, . (14)
If the coordinate transformation, &' (k) = T ~'&(k), is

applied to the state-estimate feedback controller in (3), we
obtain a new realization (DO7 b, g Jo, k o)n Characterized by

b, =T ‘b,
k, = k,T.

D,=T'D,T,
(15)
a,=T"'g,,

Notice that the transfer function from [u(k),y(k)]T to
r(k) — u(k) = ko2 (k) in (3) is invariant under such a co-
ordinate transformation. The /5-sensitivity measure in (10)
is then changed to

mo(T) = te[T "M (T)T ~ 7] + Amy(T)

(16)
= tu[T7 So(T)T) + Amy(T)
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and

Amy(T) = tut[T"WoT)+tu[T 'K\ T 1 ]+tu[TT NoT)

where M 1(T') and So(T') are obtained from the general
expression below (10) as

X (z) =F (2)W1(2)G(2)T for Y = M+(T)

X (2) = [T TF (2)W1(2)G(2)]* for Y = So(T).
For the new realization, (13) is changed to

K.=T'K.TT. (17)

If I5-scaling constraints are imposed on the new realization
(DO bo, 9, k:o)n to suppress overflow, it is required that

(T'K.T T)y=1fori=1,2,---,n (18)

As aresult, we can formulate the problem of minimizing
l2-sensitivity under the ls-scaling constraints as follows:
Given A,, by, ¢,, g, and k,, obtain an n X n nonsingular
matrix T which minimizes the sensitivity measure mo(T)
in (16) subject to the ls-scaling constraints in (18).

3. [>-Sensitivity Minimization
The [5-scaling constraints in (18) can be written as

1 1
Ji=(T 'KZKZT 1), =1
for e =1,2,---,n

A A
(19)

~ T _1

where T = T K. 2.
A1

satisfied by choosing T'  as

The conditions in (19) are always

~—1 B t1 t2 tn
[all” el 7 (]2l

(20)

Applying matrix T defined in (19) to (16), we can express
the [o-sensitivity measure in (16) as

Jo(x) = u[T My(T)T ']+ Ady() o
— [T So(T)T"] + AJy()
with
Ady(z) = u[TWoT" |+ulf KT 4+ ulf NoT |
where
AT 4L, )T, Wy=K:WK?
My (T) = K. P My (KZT TK?)K, ?
So(T) = K28y(K2T TK?)K?

K, =K. K,K.®, No— KZNoKEZ.

Consequently, the problem of obtaining an n X n nonsin-
gular matrix T which minimizes ms(T') in (16) subject to

the [o-scaling constraints in (18) can be converted into an
unconstrained optimization problem of obtaining an n? x 1
vector & which minimizes J,(z) in (21).

A quasi-Newton algorithm can be applied to minimize
Jo(x) in (21). Then in the kth iteration, the most recent
point xy, is updated to point & as [12]

Tpy1 = T + apdy (22)
where

di, = —8SpVJ,(xy), ar=arg min Jo(xr + ady)

6,0,
vfﬁk

So=1I,, dp=Tpt1— Tk, Y =VIo(Tpt1)—

5,57 Sk-i-Sk’yk(S
i 70

VJO(:Bk)

Si41= Sk+( +7fy‘ks§7k)

VJ,(x) is the gradient of .J,(x) with respect to x, and S},
is a positive-definite approximation of the inverse Hessian
matrix of J,(x). In order to compute the value of « that
minimizes J,(x + ady), the Fletcher inexact line search
method is used [13]. We choose a trivial initial point xq
obtained from an initial assignment T =1,asa starting
point, and continue the iteration process until

| Jo(®hr1) —

is satisfied where € > 0 is a prescribed tolerance.
In (22), the gradient of .J,(x) can be efficiently evaluated
using closed-form expressions as shown below.

Jo(xr)| < e (23)

ti=(tij, toj, - tny)" for j=1,2,---,n
7 - AT
_|04(T)  0To(T)  9,(T)
VJo(as)— Oty ) ) ot , R ot
(24)
with
OI) _ | ITy) ()
at,‘j A—0 A (25)
=2(61 — P2+ B3 — s+ B5)

where T';; is the matrix obtained from 7" with a perturbed
(i, 7)th component and is given by

o A AT e T o o
=T+ L Tijl _ B Agije]T
1- Aej ng'j
1
g =0 i | 90 = ettt ~ e

61—6 TMl( )T Tg”
52:€]TT SQ(T)gija

"—T A
Ba Ze]TT K9,

A AT A

63:6]TTW9T Tg,;
A A AT 4

ﬁ5:e]TTN9T ng_]

The algorithm was applied to quite a number of simula-
tion examples and fast convergence was observed in all the
cases.
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4. Numerical Example

As a numerical example, a linear discrete-time system is
specified by [4]

0 0 0775585 17 0
A,=| 1 0 —2534177 |, b,=]0
0 1 2758200 1

co=[0.0022 0.0044 0.0022 ].

When the state observer has poles at z = 0.4532, 0.5761
and 0.8437 and when the poles of the regulator are placed
at z = 0.9067, 0.7523 and 0.6231, we obtain

ko, = [ 0.350562 —0.818344 0.476100 ]
g, =102[ 0.818859 1.010891 1.182995]" .

We applied a coordinate transformation matrix given by
T, = diag{21.2378,21.2378,21.2378} so as to satisfy the
l2-scaling constraints such that (T;lK A T)Z-Z- = 1 for
i = 1,2,---  n. Then the [5-sensitivity measure in (10)
was computed as

mo = 9.649719 x 10%.

By choosing T = I3 as an initial assignment in (22)
and ¢ = 1078 as a tolerance in (23), the quasi-Newton
algorithm took 20 iterations to converge to the solution

ot 1.172374 —2.210847 —5.362575 ]

T =| —1.523614 —2.345467 —6.184722
| —2.559976 —1.101154 —0.516404 |
[—3.099470 —5.362382 —2.573048]

T°P'—| —3.696822 —5.776983 —2.403745 | .
| —4.234706 —6.172099 —2.218043 |

The minimized l-sensitivity measure in (21) was found to
be
Jo(x) = 7.8701104396.

5. Conclusion

The ls-sensitivity of a closed-loop transfer function to
the coefficients of a state-estimate feedback controller has
been analyzed, and the problem of minimizing the [»-
sensitivity measure subject to [9-scaling constraints has
been formulated. An iterative algorithm based on a quasi-
Newton method has been developed for synthesizing the
optimal structure of a state-estimate feedback controller
with minimum [-sensitivity and no overflow. Computer
simulation results have demonstrated the validity and ef-
fectiveness of the proposed technique.
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