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Abstract—The l2-sensitivity of a closed-loop transfer
function with respect to coefficients of a state-estimate
feedback controller is analyzed, and the problem of min-
imizing an l2-sensitivity measure subject to l2-scaling con-
straints is formulated. Next, the constraint optimization
problem is converted into an unconstrained optimization
formulation by using linear-algebraic techniques, and an
efficient quasi-Newton method is applied to solve the un-
constrained optimization problem. Finally, a numerical ex-
ample is presented to illustrate the utility of the proposed
technique.

1. Introduction

It is well-known that a linear system has an infinite num-
ber of state-space minimal realizations. For a given transfer
function, it is of practical importance to construct a state-
space realization such that the coefficient sensitivity of the
linear system is minimal or nearly minimal in a certain
sense. Due to finite word length (FWL) effects caused by
either truncation or rounding of the coefficients, the poor
sensitivity may lead to the degradation of the transfer char-
acteristics in a FWL implementation of the system. Several
techniques for constructing state-space realizations with
minimum sensitivity have been reported: l1/l2-mixed sen-
sitivity minimization [1]-[4] and l2-sensitivity minimiza-
tion [5]-[8]. It has been argued in [9],[10] that sensitivity
minimization based on a pure l2-norm is more natural and
reasonable relative to l1/l2-mixed sensitivity minimization.
More recently, the minimization problem of l2-sensitivity
subject to l2-scaling constraints has been explored for state-
space digital filters [9],[10]. However, not enough research
has been done on the minimization of either l1/l2-mixed
sensitivity or l2-sensitivity subject to l2-scaling constraints
for the closed-loop transfer function with a state-estmate
feedback controller [11]. Notice that the introduction of l2-
scaling constraints is beneficial for suppressing overflow.

In this paper, the problem of synthesizing the optimal
structure of a state-estimate feedback digital controller with
minimum l2-sensitivity and no overflow is investigated.
First, the l2-sensitivity of a closed-loop transfer function
with respect to coefficients of a state-estimate feedback
controller is analyzed. Second, the problem of minimizing
the l2-sensitivity subject to l2-scaling constraints is formu-

lated. Third, the constrained optimization problem is con-
verted into an unconstrained one by using linear-algebraic
techniques. The unconstrained optimization problem is
then solved by applying a quasi-Newton algorithm. Finally,
a numerical example is presented to illustrate the validity
and effectiveness of the proposed technique.

2. l2-Sensitivity Analysis

Suppose that a linear discrete-time time-invariant system
is represented by

x(k + 1) = Aox(k) + bou(k)

y(k) = cox(k)
(1)

where x(k) is an n × 1 state vector, u(k) is a scalar input,
y(k) is a scalar output, and Ao, bo and co are n× n, n× 1
and 1×n real matrices, respectively. The above linear sys-
tem is assumed to be stable, controllable and observable.
The transfer function of the linear system in (1) is given by

Ho(z) = co(zIn − Ao)−1bo. (2)

Assuming that a regulator is designed using the full-order
state observer, a state-estimate feedback controller denoted
by (Do, bo, go, ko)n can be expressed as

x̃(k + 1) = Dox̃(k) + bou(k) + goy(k)

u(k) = −kox̃(k) + r(k)
(3)

where x̃(k) is an n × 1 state vector in the full-order state
observer, go is an n × 1 gain vector chosen so that all the
eigenvalues of matrix Do = Ao − goco are located within
the unit circle on the complex plane, ko is a 1 × n state-
feedback gain vector chosen so that each of the eigenvalues
of matrix Ao − boko is at an arbitrary location within the
unit circle, and r(k) is a scalar reference signal.

In the case where the state-estimate feedback controller
in (3) is implemented with infinite precision from the coef-
ficients of the linear system in (1), the FWL implementa-
tion of (3) can be written in the form

x̂(k + 1) = Dx̂(k) + bu(k) + gy(k)

u(k) = −kx̂(k) + r(k)
(4)
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where x̂(k) denotes the state vector in the FWL implemen-
tation. The closed-loop system consisting of (1) and (4) is
then described by

[
x(k + 1)

x̂(k + 1)

]
=

[
Ao −bok

gco D − bk

][
x(k)

x̂(k)

]
+

[
bo

b

]
r(k)

y(k) = [co 0]

[
x(k)

x̂(k)

]
.

(5)
The transfer function of the linear system in (5) is ex-
pressed as

Hc(z) = c (zI2n − A)−1b (6)

where

A =

[
Ao −bok

gco D − bk

]
, b =

[
bo

b

]
, c = [co 0] .

Definition 1: Let X be an m × n real matrix and let
f(X) be a scalar complex function of X , differentiable
with respect to all the entries of X . The sensitivity function
of f(X) with respect to X is then defined as

SX =
∂f(X)

∂X
with (SX)ij =

∂f(X)
∂xij

(7)

where xij denotes the (i, j)th entry of matrix X .
According to Definition 1, the sensitivities of Hc(z) with

respect to D, b, k and g are defined and then evaluated with
the exact values of Ao, bo, co, ko and go as

∂Hc(z)
∂D

= −[F (z)W1(z)G(z)]T

∂Hc(z)
∂b

= −W1(z)(1 − W2(z))GT (z)

∂Hc(z)
∂kT

= −F (z)W1(z),
∂Hc(z)

∂g
= −W 2

1 (z)GT (z)

(8)
where

G (z) = ko [zIn − (Ao − goco)]
−1

F (z) = [zIn − (Ao − boko)]
−1

bo

W1(z) = co [zIn − (Ao − boko)]
−1 bo

W2(z) = ko [zIn − (Ao − boko)]
−1

bo.

Definition 2 [5]: Let X(z) be an m×n complex matrix-
valued function of the complex variable z and let xpq(z) be
the (p, q)th entry of X(z). The l2-norm of X(z) is then
defined as

‖X(z)‖2 =

[
1
2π

∫ 2π

0

(
m∑

p=1

n∑
q=1

∣∣xpq(ejω)
∣∣2) dω

] 1
2

=

(
tr

[
1

2πj

∮
|z|=1

X(z)X∗(z)
dz

z

]) 1
2

.

By virtue of (8) and Definition 2, it is possible to define
the overall l2-sensitivity measure by

m2=
∥∥∥∥∂Hc(z)

∂D

∥∥∥∥
2

2

+
∥∥∥∥∂Hc(z)

∂b

∥∥∥∥
2

2

+
∥∥∥∥∂Hc(z)

∂kT

∥∥∥∥
2

2

+
∥∥∥∥∂Hc(z)

∂g

∥∥∥∥
2

2
(9)

Note that the sensitivity measure in [4] based on a mixture
of l1- and l2-norms differs from that in (9). By substituting
(8) into (9), we arrive at

m2 = tr [M1] + tr [W 9] + tr [K1] + tr [N9] (10)

where M1, W 9, K1, and N 9 are obtained by a general
expression

Y =
1

2πj

∮
|z|=1

X(z)X∗(z)
dz

z

with X(z) = F (z)W1(z)G(z) for Y = M1

X(z) = [W1(z)(1−W2(z))G(z)]∗ for Y = W 9

X(z) = F (z)W1(z) for Y = K1

X(z) = [W 2
1 (z)G(z)]∗ for Y = N 9.

Taking the z-transform of the state equation in (5) yields[
X(z)

X̂(z)

]
= (zI2n − A)−1bR(z). (11)

Replacing D, b, g, and k by the exact values of Do, bo,
go, and ko, respectively, one can write (11) as[

X(z)

X̂(z)

]
=

[
F (z)

F (z)

]
R(z) (12)

where

F (z) = S(zI2n − S−1AoS)−1S−1bo

Ao =

[
Ao −boko

goco Do − boko

]
, bo =

[
bo

bo

]
.

Then it is easy to show that the controllability Gramian

Kc =
1

2πj

∮
|z|=1

F (z)F ∗(z)
dz

z
(13)

can be obtained by solving the Lyapunov equation

Kc = (Ao − boko)Kc(Ao − boko)T + bob
T
o . (14)

If the coordinate transformation, x̃′(k) = T −1x̃(k), is
applied to the state-estimate feedback controller in (3), we
obtain a new realization (D̃o, b̃o, g̃o, k̃o)n characterized by

D̃o = T −1DoT , b̃o = T −1bo

g̃o = T −1go, k̃o = koT .
(15)

Notice that the transfer function from [u(k), y(k)]T to
r(k) − u(k) = kox̃(k) in (3) is invariant under such a co-
ordinate transformation. The l2-sensitivity measure in (10)
is then changed to

m2(T ) = tr[T −1M1(T )T −T ] + Δm2(T )

= tr[T T S9(T )T ] + Δm2(T )
(16)
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and

Δm2(T ) = tr[T T W 9T ]+tr[T −1K1T
−T ]+tr[T T N 9T ]

where M1(T ) and S9(T ) are obtained from the general
expression below (10) as

X(z) = F (z)W1(z)G(z)T for Y = M1(T )
X(z) = [T −T F (z)W1(z)G(z)]∗ for Y = S9(T ).

For the new realization, (13) is changed to

K̃c = T −1KcT
−T . (17)

If l2-scaling constraints are imposed on the new realization
(D̃o, b̃o, g̃o, k̃o)n to suppress overflow, it is required that

(T −1KcT
−T )ii = 1 for i = 1, 2, · · · , n. (18)

As a result, we can formulate the problem of minimizing
l2-sensitivity under the l2-scaling constraints as follows:
Given Ao, bo, co, go, and ko, obtain an n×n nonsingular
matrix T which minimizes the sensitivity measure m2(T )
in (16) subject to the l2-scaling constraints in (18).

3. l2-Sensitivity Minimization

The l2-scaling constraints in (18) can be written as

(T̂
−T

T̂
−1

)ii = (T −1K
1
2
c K

1
2
c T −T )ii = 1

for i = 1, 2, · · · , n
(19)

where T̂ = T T K
− 1

2
c . The conditions in (19) are always

satisfied by choosing T̂
−1

as

T̂
−1

=

[
t1

||t1|| ,
t2

||t2|| , · · · ,
tn

||tn||

]
. (20)

Applying matrix T̂ defined in (19) to (16), we can express
the l2-sensitivity measure in (16) as

Jo(x) = tr[T̂
−T

M̂ 1(T̂ ) T̂
−1

] + ΔJo(x)

= tr[T̂ Ŝ9(T̂ ) T̂
T
] + ΔJo(x)

(21)

with

ΔJo(x) = tr[T̂ Ŵ 9T̂
T
]+tr[T̂

−T
K̂1T̂

−1
]+tr[T̂ N̂ 9T̂

T
]

where

x = (tT
1 , tT

2 , · · · , tT
n )T , Ŵ 9 = K

1
2
c W 9K

1
2
c

M̂ 1(T̂ ) = K
− 1

2
c M1(K

1
2
c T̂

T
T̂K

1
2
c )K− 1

2
c

Ŝ9(T̂ ) = K
1
2
c S9(K

1
2
c T̂

T
T̂K

1
2
c )K

1
2
c

K̂1 = K
− 1

2
c K1K

− 1
2

c , N̂9 = K
1
2
c N9K

1
2
c .

Consequently, the problem of obtaining an n × n nonsin-
gular matrix T which minimizes m2(T ) in (16) subject to

the l2-scaling constraints in (18) can be converted into an
unconstrained optimization problem of obtaining an n2×1
vector x which minimizes Jo(x) in (21).

A quasi-Newton algorithm can be applied to minimize
Jo(x) in (21). Then in the kth iteration, the most recent
point xk is updated to point xk+1 as [12]

xk+1 = xk + αkdk (22)

where

dk = −Sk∇Jo(xk), αk = arg min
α

Jo(xk + αdk)

Sk+1 = Sk+
(
1+γT

k
Skγk

γT
k δk

)
δkδ

T

k

γT
k δk

− δkγT
k
Sk+Skγk

δT

k

γT
k δk

S0 =In, δk =xk+1−xk, γk =∇Jo(xk+1)−∇Jo(xk)

∇Jo(x) is the gradient of Jo(x) with respect to x, and Sk

is a positive-definite approximation of the inverse Hessian
matrix of Jo(x). In order to compute the value of α that
minimizes Jo(xk + αdk), the Fletcher inexact line search
method is used [13]. We choose a trivial initial point x0

obtained from an initial assignment T̂ = In as a starting
point, and continue the iteration process until

|Jo(xk+1) − Jo(xk)| < ε (23)

is satisfied where ε > 0 is a prescribed tolerance.
In (22), the gradient of Jo(x) can be efficiently evaluated

using closed-form expressions as shown below.

tj =(t1j , t2j , · · · , tnj)T for j = 1, 2, · · · , n

∇Jo(x)=

[
∂Jo(T̂ )

∂t11
, · · · ,

∂Jo(T̂ )
∂tn1

, · · · ,
∂Jo(T̂ )
∂tnn

]T

(24)
with

∂Jo(T̂ )
∂tij

= lim
Δ→0

Jo(T̂ ij) − Jo(T̂ )
Δ

= 2(β1 − β2 + β3 − β4 + β5)

(25)

where T̂ ij is the matrix obtained from T̂ with a perturbed
(i, j)th component and is given by

T̂ ij = T̂ +
ΔT̂ gije

T
j T̂

1 − ΔeT
j T̂ gij

, T̂
−1

ij = T̂
−1− Δgije

T
j

gij = ∂

{
tj

||tj ||
}

/∂tij =
1

||tj ||3 (tijtj − ||tj ||2ei)

β1 = eT
j T̂ M̂1(T̂ ) T̂

T
T̂ gij

β2 = eT
j T̂

−T
Ŝ9(T̂ ) gij , β3 = eT

j T̂ Ŵ 9T̂
T
T̂ gij

β4 = eT
j T̂

−T
K̂1 gij , β5 = eT

j T̂ N̂ 9T̂
T
T̂ gij .

The algorithm was applied to quite a number of simula-
tion examples and fast convergence was observed in all the
cases.
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4. Numerical Example

As a numerical example, a linear discrete-time system is
specified by [4]

Ao =

⎡
⎣ 0 0 0.775585

1 0 −2.534177
0 1 2.758200

⎤
⎦

T

, bo =

⎡
⎣ 0

0
1

⎤
⎦

co =
[

0.0022 0.0044 0.0022
]
.

When the state observer has poles at z = 0.4532, 0.5761
and 0.8437 and when the poles of the regulator are placed
at z = 0.9067, 0.7523 and 0.6231, we obtain

ko =
[

0.350562 −0.818344 0.476100
]

go = 102
[

0.818859 1.010891 1.182995
]T

.

We applied a coordinate transformation matrix given by
T s = diag{21.2378, 21.2378, 21.2378} so as to satisfy the
l2-scaling constraints such that (T −1

s KcT
−T
s )ii = 1 for

i = 1, 2, · · · , n. Then the l2-sensitivity measure in (10)
was computed as

m2 = 9.649719× 104.

By choosing T̂ = I3 as an initial assignment in (22)
and ε = 10−8 as a tolerance in (23), the quasi-Newton
algorithm took 20 iterations to converge to the solution

T̂
opt

=

⎡
⎣ 1.172374 −2.210847 −5.362575
−1.523614 −2.345467 −6.184722
−2.559976 −1.101154 −0.516404

⎤
⎦

T opt=

⎡
⎣−3.099470 −5.362382 −2.573048
−3.696822 −5.776983 −2.403745
−4.234706 −6.172099 −2.218043

⎤
⎦ .

The minimized l2-sensitivity measure in (21) was found to
be

Jo(x) = 7.8701104396.

5. Conclusion

The l2-sensitivity of a closed-loop transfer function to
the coefficients of a state-estimate feedback controller has
been analyzed, and the problem of minimizing the l2-
sensitivity measure subject to l2-scaling constraints has
been formulated. An iterative algorithm based on a quasi-
Newton method has been developed for synthesizing the
optimal structure of a state-estimate feedback controller
with minimum l2-sensitivity and no overflow. Computer
simulation results have demonstrated the validity and ef-
fectiveness of the proposed technique.
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