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Abstract—We present the interplay between synchro-
nization of coupled chaotic nodes with heterogeneous de-
lays and the greatest common divisor (GCD) of loops com-
posing the graph. In the weak chaos region and for GCD=1
the network is in chaotic zero-lag synchronization (ZLS),
whereas for GCD=m > 1 synchronization of m-clusters
emerges. ZLS is achievable even in oriented graphs. The
role of GCD is a global decision and cannot be deduced
from local topological or geometric properties of the net-
work. Results are supported by simulations of chaotic sys-
tems, self-consistent and mixing arguments, as well as an-
alytical solutions of Bernoulli maps.

1. Introduction

Synchronization, complex networks, and chaotic dy-
namics with delay couplings are emerging phenomena,
and concepts which have fascinated scientists for decades.
These phenomena are ubiquitous in nature and play a
key role in almost all fields of science including biology,
ecology, physics, climatology, sociology and technology
[1, 2, 3]. However, each one originates and is governed by
different features and rules. For instance, the description
and classification of complex networks are often based on
their statistical properties, such as degree distribution, aver-
age degree and degree correlations [3, 4]. The observation
that real networks have degree distributions that are very
different from those of classical random graphs was the
starting point for the recent explosion of interest in complex
networks [3, 5]. By contrast the dynamics of processes de-
fined on networks are closely related to the spectrum of an
appropriate connection operator; a prototypical example is
chaos synchronization, which crucially depends on the ex-
treme eigenvalues of the graph Laplacian [6, 7, 8]. Is there
an interplay between the statistical properties of a network
and its extreme spectral properties? Over the last few years
a number of papers have reported correlations between the
synchronization of a network and its degree of homogene-
ity [9, 10, 11], clustering coefficients [12], degree correla-
tions [13], average degree and degree distribution [14]. The
literature even reports some conflicting trends, e.g. syn-
chronization is amplified/damaged by increasing the de-
gree of homogeneity, or adding a few shortcut links en-
hances/reduces the level of synchrony [9, 13, 14].

We report that synchronization of chaotic networks com-
posed of identical nonlinear units with heterogeneous time-

delayed couplings is governed by the GCD of the length
of directed loops of the corresponding graphs. We con-
sider strongly connected oriented graphs, i.e. cases where
there is a path from each node to every other node in the
graph. Each directed edge of the graph corresponds to a
coupling with delay time kiτ, where ki is an integer and
τ is the time unit of the coupling delay. The length of a
directed loop is the sum of all integers ki along the loop,
and the GCD of lengths of all loops determines the dy-
namic properties of the network. Two main types of chaotic
synchronization can be achieved as a function of the value
of the GCD in the limit of weak chaos, i.e. a small posi-
tive maximal Lyapunov exponent λmax. For GCD=1, zero-
lag synchronization (ZLS) among all nodes of the graph
can be achieved, whereas for GCD=m > 1, nodes are
partitioned into m-clusters, where all nodes belonging to
a cluster are in ZLS. Hence, for a homogeneous graph
with even one bidirectional connection between two nodes,
the number of clusters is bounded by two. This synchro-
nization state is different from Chimera states, where a
network splits only into synchronized and desynchronized
sub-populations [15, 16].

2. GCD-clusters

The results of heterogeneous oriented small networks ex-
emplifying the role of the GCD are presented in Fig. 1 for
the chaotic Bernoulli maps (BM) [18], as well as for the
Lang-Kobayashi equations (LKE) which are a good model
for the intensity dynamics of coupled chaotic semiconduc-
tor lasers [19, 17] and are explicitly given in references
[17, 20]. The strength of a directed coupling is denoted
by σ and ε for the LKE and BM, respectively, and for sim-
plicity we assume that the sum of incoming equal strength
couplings to each unit is identical, i.e. for the BM case
and for a unit with q incoming couplings the dynamics is
xi

t+1 = (1 − ε) f (xi
t) + ε/q

∑q
j f (x j

t−k jτ
), where xi

t is the state
of node i at time t and f (x) = (ax)mod1 which is chaotic
for a > 1. Throughout this report τ is equal to 40 steps
and 10 ns for BM and LKE , respectively, unless otherwise
indicated.

Figure 1a depicts a network composed of two con-
nected loops of lengths 9τ, 12τ and sixteen nodes. Since
GCD(9,12)=3, a chaotic synchronization consisting of 3
clusters (3-CLs) is expected, and is depicted in Fig. 1a
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Figure 1: Synchronization of homogeneous/heterogeneous chaotic motifs for parameters in the weak chaos region. Nodes
with the same color are synchronized and the number of colors represents the number of CLs. (a) Homogeneous oriented
motif consists of two connected loops of sizes 9τ and 12τ with 3-CLs. (b) Homogeneous motif similar to (a) in ZLS. (c)
Three connected heterogeneous loops of sizes 6τ, 15τ and 10τ, where tick marks indicate unit distances τ. GCD(6,10,15)
=1 and the network is in ZLS. (d) A Pair of connected loops taken from the three loops of (c), 6τ, 15τ, where GCD(6,15)=3
and nodes belonging to each one of the three CLs are in ZLS in contrast to ZLS in (c). Small colored nodes in hetero-
geneous motifs are presented for illustration only. (e) An oriented heterogeneous motif with minimal number of units, 3
units, exhibits complete ZLS. (f) An oriented homogeneous motif Heterogeneous motif with minimal number of units, 4
units, exhibits complete ZLS. (g)Change of one directed coupling to bidirectional. Two connected loops of 8τ and 12τ,
where one bidirectional coupling (red) changes synchronization from 4-CLs to 2-CLs.

where each CL is represented by a different color. Solv-
ing the master stability function [6] for the sixteen BM re-
veals that for a=1.02, for instance, and a coupling strength
ε > 0.47 the 3-CLs is a stable solution. The ZLS for a ho-
mogeneous network consisting of the two connecting loops
of delays 3τ and 4τ (the same ratio between the two loops,
9τ and 12τ, of Fig. 1a) is presented in Fig. 1a. By rescaling
delays with the minimal delay in the network, 3τ, the effec-
tive relative sizes of the loops are 3 and 4 and GCD(3,4)=1.
In fact, simulations of the network with BM as well as the
analytical solution of the master stability function indicate
a complete ZLS for a=1.02, for instance, and ε > 0.12.

A more complex heterogeneous network consisting of
three connecting loops for a total delay of 6τ(τ, 2τ, 3τ),
10τ(τ, 2τ, 3τ, 4τ) and 15τ(τ, 2τ, 2τ, 4τ, 3τ, 3τ) is depicted in
Fig. 1c. The GCD(6,10,15)=1 and the entire network was
expected to be in ZLS, as was confirmed in simulations for
BM with a=1.02 and ε = 0.92, for instance, where the
cross correlation [20] at zero time shift C ∼ 0.9. Figure 1d
depicts the synchronization of networks consisting of only
a pair of connecting loops of Fig. 1c, (6,15), where the
chaotic behavior is GCD(6,15)=3-CLs, as was confirmed
in simulations for BM. These results indicate that each mo-
tif does not maintain its behavior in the entire network,
which thus cannot be simply described as a ”Lego” of con-
necting components with given chaotic modes of activity.
Note that motifs can be connected either by common delay
couplings or by a single node. Hence the role of GCD is a

global decision which in general cannot be deduced from
local topological or geometric properties of the network.
An exception is the case where GCD=1 for two local loops,
which is enough information to deduce that ZLS takes over
the entire chaotic behavior of the network. Nevertheless,
the GCD in general can induce long-range effects such that
addition, deletion, changes in delays of existing couplings
can affect the entire chaotic state of the network and in par-
ticular correlations of remote nodes.

A change in only one directed coupling to bidirectional
(mutual) has a dramatic effect on the synchronization pat-
tern of a heterogeneous/homogeneous network, since a
loop of size 2 is now embedded in the network. As a re-
sult, in the case where 2 is a common divisor of all loops
of the network 2-CLs takes over, otherwise ZLS is the so-
lution. The effect of one bidirectional coupling is exempli-
fied in Fig. 1g where the motif consists of two connected
directed loops of 8τ and 12τ with GCD=4. After one di-
rected coupling is converted to bidirectional (red coupling)
2-CLs is the only possible synchronization, e.g. a=1.01
and ε > 0.24.

3. Chain amplification

The main difference between homogeneous and hetero-
geneous networks is the level of synchronization between
nodes belonging to the same CL. For homogeneous net-
works ki = 1, Figs. 1a and 1b, complete synchronization is
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achieved such that nodes belonging to the same CL have an
identical chaotic trajectory. By contrast, for heterogeneous
networks, complete synchronization is not a solution of the
dynamics, since units belonging to the same CL can be con-
nected to preceding units by different delays and chaotic
signals are not periodic. Nevertheless, in the weak chaos
region, a solution with a remarkable ZLS between trajec-
tories of nodes belonging to the same CL of the hetero-
geneous network emerges, where the level of synchroniza-
tion is enhanced toward a complete ZLS as chaos becomes
weaker. For the parameters of the heterogeneous networks
synchronization measured by cross correlation [20] at zero
time shift C ∼ 0.9, where for BM it was averaged over
a window of 103 steps and for LKE it was averaged over
windows of 10 ns, excluding the low frequency fluctuations
regions [17, 20].

Synchronization of homogeneous networks is achievable
for weaker chaos, e.g. a smaller a for BM, as the size of
loops increases. This trend can be attributed to the typi-
cal emergence of longer chains in a network composed of
larger connected loops, where the largest Lyapunov expo-
nent (amplification) scales in the first order approximation
linearly with the number of nodes that constitute the chain,
see an illustration in Fig. 2. Hence the emergence of longer
chains requires a weaker chaos to maintain complete syn-
chronization. A similar trend is applicable for heteroge-
neous networks, which resemble homogeneous networks
with additional intermediate units which result in longer
chains. In addition, to maintain a high level of synchro-
nization for the heterogeneous case a weaker chaos is re-
quired than for the corresponding homogeneous network
characterized by complete synchronization. Both these
trends were observed in simulations and for some hetero-
geneous networks the master stability functions were ex-
plicitly solved. Hence synchronization of chaotic networks
is expected in general to be found in the weak chaos region.

4. Multiple delays

For networks with GCD=1, complete ZLS is achievable
either for the case where all nodes are influenced by an
identical set of heterogeneous delays or for homogeneous
delays, ki = 1. Figure 1e depicts the heterogeneous motif
with minimal number of nodes with complete ZLS. This
motif consists of 3 nodes, each one of which is connected
to the preceding node with two delays, τ and 2τ and the mo-
tif consists of loops of 3τ, 4τ, 5τ and 6τ such that GCD=1.
Similarly, ZLS can be found where 2τ is replaced by 3τ, 5τ
etc., where GCD=1. Figure 1f depicts the homogeneous
motif with minimal number of nodes, which consists of 4
nodes composed of loops of 3τ and 4τ such that GCD=1.
Results of simulations for BM as well as the analytical so-
lution of the master stability function for both networks in-
dicate ZLS for a=1.02, ε > 0.1 for Fig. 1e and ε > 0.12 for
Fig. 1f. Similarly, correlation close to one (∼ 0.99) in the
ZLS state was measured in simulations out of the low fre-

��� �τ τ τ τ τ �4τ 4τ 

(a) (b) 
Figure 2: Two Bernoulli chains with the same length, 4τ: a
comparison between the state of the last unit as a result of
two close initial conditions, x and x + ∆, for the first unit.
For ε → 1, for instance, the internal dynamics is negligi-
ble and the difference for (a) is a4∆ whereas for (b) it is
a∆. Hence, the Lyapunov exponent of the entire chain is
∼ 4 log(a) and ∼ log(a) for (a) and (b), respectively. For
directed graphs composed of large loops, longer chains are
more likely to appear and in order to compensate the am-
plification of such chains, compare to graph with smaller
loops, a smaller slope a has to be selected.

quency fluctuations regions for LKE [17, 20] for p=1.02
and σ = 14ns−1 for Fig. 1f and σ = 17.5ns−1 for Fig.
1g. Note that complete ZLS can be found in a smaller het-
erogeneous motif than in homogeneous motifs and further-
more multiple delays enlarge the region, e.g. ε in Bernoulli,
where complete ZLS is achieved.

5. Mixing argument

The role of the GCD can be best understood by the self-
consistent argument that a necessary condition for a chaotic
synchronization is that each node is driven by the same set
of ”colors”, where for heterogeneous networks the missing
nodes are artificially inserted. The trivial solution is always
one ”color”, ZLS; however, the alternative solution con-
sists of exactly GCD ”colors”, GCD-CLs. An attempt to
consistently color the network with a smaller number fails,
since a contradiction emerges where nodes with the same
color have different drives. As for bidirectional chaotic net-
works, the results always indicate that with a lack of self-
couplings, CL always takes over ZLS when it is a consis-
tent solution. Another interesting argument that accounts
for the emergence of ZLS in oriented graphs is the mixing
argument which was first proposed for bidirectional net-
works with multiple delays [21] and was recently observed
in an experiment on mutually coupled chaotic lasers [22].
Figure 3 depicts the adjacency matrix, G, of Fig. 1f. The
40th power of the matrix G indicates that it is a primitive
matrix [23], where each one of the four nodes receives at
time t an input from all four nodes, including the node it-
self, from time step t−40, where time steps are normalized
with τ. Furthermore the drives for all nodes are identical
indicating that only ZLS is a consistent solution.
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Figure 3: The adjacency matrix, G, for the network of Fig.
1f and its 40th power (first two leading digits of each matrix
element).

6. Analytical results τ→ ∞

For homogeneous oriented Bernoulli networks in the
limit of infinite delays, τ → ∞, the role of the GCD can
be established analytically. The corresponding equations
for the BM are

xi
t = (1 − ε) f (xi

t−1) + ε
∑

j,i

Gi j f (x j
t−τ) . (1)

The adjacency matrix Gi j represents the couplings and their
weights in the oriented network and we assume that the
sum of the incoming signals to each unit is equal to one,∑

j Gi j = 1. These special types of non-negative matrices
are known as stochastic matrices and play a central role in
Markov chain processes, where many of their mathematical
properties are known [23].

For Bernoulli networks with homogeneous infinite delay
couplings the master stability function depends solely on
the eigenvalue spectrum of the adjacency matrix G [18].
More precisely, the matrix G always has an eigenvalue γ0 =

1, which determines the Lyapunov exponent tangential to
the synchronization manifold (SM) and does not affect the
stability of the synchronization. The stability of the SM is
given by

γ < e−λmaxτ (2)

where γ is the second largest modulus of the eigenvalues
of G, and λmax is the largest Lyapunov exponent. Hence,
a sufficient condition for the stability of the SM is deter-
mined by a non-zero eigenvalue gap (γ < 1). Markov chain
theory now makes it possible to derive mathematical state-
ments such as: (a) bi-partite networks as well as directed
rings have γ = 1 and complete ZLS is unstable; (b) a net-
work where each node is connected to any other node and
GCD=1, γ < 1, hence complete ZLS is possible; (c) for a
similar network with GCD=m, Gm has a block structure of
m blocks and the network is in m-CLs.
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